Lecture Notes for CS 2110
Introduction to Theory of Computation

Robert Daley
Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

Forward

Contents

1. Introduction

1.1 Preliminaries
1.2 Representation of Objects
1.3 Codings for the Natural Numbers
1.4 Inductive Definition and Proofs

2. Models of Computation

2.1 Memoryless Computing Devices
2.2 Digital Circuits
2.3 Propositional Logic
2.4 Finite Memory Devices
2.5 Regular Languages

3. Loop Programs

3.1 Semantics of LOOP Programs
3.2 Other Aspects
3.3 Complexity of LOOP Programs
4. Primitive Recursive Functions
 4.1 Primitive Recursive Expressibility
 4.2 Equivalence between models
 4.3 Primitive Recursive Expressibility (Revisited)
 4.4 General Recursion
 4.5 String Operations
 4.6 Coding of Tuples

5. Diagonalization Arguments

6. Partial Recursive Functions

7. Random Access Machines
 7.1 Parsing RAM Programs
 7.2 Simulation of RAM Programs
 7.3 Index Theorem
 7.4 Other Aspects
 7.5 Complexity of RAM Programs

8. Acceptable Programming Systems
 8.1 General Computational Complexity
 8.2 Algorithmically Unsolvable Problems

9. Recursively Enumerable Sets

10. Recursion Theorem
 10.1 Applications of the Recursion Theorem
 10.1.1 Machine Learning
 10.1.2 Speed-Up Theorem

11. Non-Deterministic Computations
 11.1 Complexity of Non-Deterministic Programs
 11.2 NP-Completeness
 11.3 Polynomial Time Reducibility
 11.4 Finite Automata (Review)
 11.5 PSPACE Completeness
12. Formal Languages

12.1 Grammars
12.2 Chomsky Classification of Languages
12.3 Context Sensitive Languages
12.4 Linear Bounded Automata
12.5 Context Free Languages
12.6 Push Down Automata
12.7 Regular Languages

Bibliography
Index
Forward

These notes have been compiled over the course of more than twenty years and have been greatly influenced by the treatments of the subject given by Michael Machtey and Paul Young in *An Introduction to the General Theory of Algorithms* and to a lesser extent by Walter Brainerd and Lawrence Landweber in *Theory of Computation*. Unfortunately both these books have been out of print for many years. In addition, these notes have benefited from my conversations with colleagues especially John Case on the subject of the Recursion Theorem.

Rather than packaging these notes as a commercial product (i.e., book), I am making them available via the World Wide Web (initially to Pitt students and after suitable debugging eventually to everyone).
Contents

- Contents
- 1. Introduction
 - 1.1 Preliminaries
 - 1.2 Representation of Objects
 - 1.3 Codings for the Natural Numbers
 - 1.4 Inductive Definition and Proofs
- 2. Models of Computation
 - 2.1 Memoryless Computing Devices
 - 2.2 Digital Circuits
 - 2.3 Propositional Logic
 - 2.4 Finite Memory Devices
 - 2.5 Regular Languages
- 3. Loop Programs
 - 3.1 Semantics of LOOP Programs
 - 3.2 Other Aspects
 - 3.3 Complexity of LOOP Programs
- 4. Primitive Recursive Functions
 - 4.1 Primitive Recursive Expressibility
 - 4.2 Equivalence between models
 - 4.3 Primitive Recursive Expressibility (Revisited)
 - 4.4 General Recursion
 - 4.5 String Operations
 - 4.6 Coding of Tuples
- 5. Diagonalization Arguments
- 6. Partial Recursive Functions
- 7. Random Access Machines
 - 7.1 Parsing RAM Programs
 - 7.2 Simulation of RAM Programs
 - 7.3 Index Theorem
 - 7.4 Other Aspects
 - 7.5 Complexity of RAM Programs
- 8. Acceptable Programming Systems
8.1 General Computational Complexity
8.2 Algorithmically Unsolvable Problems

9. Recursively Enumerable Sets

10. Recursion Theorem
 10.1 Applications of the Recursion Theorem
 10.1.1 Machine Learning
 10.1.2 Speed-Up Theorem

11. Non-Deterministic Computations
 11.1 Complexity of Non-Deterministic Programs
 11.2 NP-Completeness
 11.3 Polynomial Time Reducibility
 11.4 Finite Automata (Review)
 11.5 PSPACE Completeness

12. Formal Languages
 12.1 Grammars
 12.2 Chomsky Classification of Languages
 12.3 Context Sensitive Languages
 12.4 Linear Bounded Automata
 12.5 Context Free Languages
 12.6 Push Down Automata
 12.7 Regular Languages

Bibliography

Index
1. Introduction

Goal

To learn the fundamental properties and limitations of computability (i.e., the ability to solve problems by computational means)

Major Milestones

- **Invariance**
 in formal descriptions of computable functions -- Church's Thesis

- **Undecidability**
 by computer programs of any dynamic (i.e., behavioral) properties of computer programs based on their text

Major Topics

- **Models**
 of computable functions

- **Decidable vs undecidable**
 properties

- **Feasible vs infeasible**
 problems -- P ≠ NP

- **Formal Languages**
 (i.e., languages whose sentences can be parsed by computer programs)
1.1 Preliminaries

We will study a variety of computing devices. Conceptually we depict them as being "black boxes" of the form

\[\begin{align*}
 x & \quad \rightarrow \quad f \\
 \downarrow & \\
 y &
\end{align*} \]

where \(x \) is an input object of type \(X \) (i.e., \(x \in X \)) and \(y \) is an output object of type \(Y \). Thus, at this level the device computes a function \(f : X \rightarrow Y \) defined by \(f(x) = y \).

- For some computing devices the function \(f \) will be a *partial function* which means that for some inputs \(x \) the function is not defined (i.e., produces no output). In this case we write \(f(x) \uparrow \).

 Similarly, we write \(f(x) \downarrow \) whenever \(f \) on input \(x \) is defined.
- The set of all inputs on which the function \(f \) is defined is called its *domain* (denoted by \(\text{dom } f \)), and is given by \(\text{dom } f = \{ x : f(x) \downarrow \} \).
- Also, the *range* of a function \(f \) (denoted by \(\text{ran } f \)), and is given by \(\text{ran } f = \{ y : \exists x \in \text{dom } f, y = f(x) \} \).

We will also be interested in computing devices which have multiple inputs and outputs, i.e., which can be depicted as follows:

\[\begin{align*}
 x_1 & \quad \rightarrow \quad f_1 \\
 x_2 & \quad \rightarrow \quad f_2 \\
 \vdots & \\
 x_n & \quad \rightarrow \quad f_n \\
 \downarrow & \\
 y_1 & \\
 \downarrow & \\
 y_2 & \\
 \vdots & \\
 \downarrow & \\
 y_m &
\end{align*} \]
where x_1, \ldots, x_n are objects of type X_1, \ldots, X_n (i.e., $x_1 \in X_1, \ldots, x_n \in X_n$), and y_1, \ldots, y_m are objects of type Y_1, \ldots, Y_m. Thus, the device computes a function

$$f : X_1 \times \cdots \times X_n \rightarrow Y_1 \times \cdots \times Y_m$$

defined by $f(x_1, \ldots, x_n) = (y_1, \ldots, y_m)$. Here we use $X_1 \times \cdots \times X_n$ to denote the cartesian product, i.e.,

$$X_1 \times \cdots \times X_n = \{(x_1, \ldots, x_n) : x_1 \in X_1, \ldots, x_n \in X_n\}.$$

- We also use X^n to denote the cartesian product when $X_1 = X_2 = \cdots = X_n = X$.
- Of course, since $X_1 \times \cdots \times X_n$ is just some set X and $Y_1 \times \cdots \times Y_m$ is some set Y, the situation with multiple inputs and outputs can be viewed as a more detailed description of a single input-output device where the inputs are n-tuples of elements and the outputs are m-tuples of elements.
- We use \vec{x}_i^n to denote $x_i, x_{i+1}, \ldots, x_n$ where $i \leq n$, and \vec{x}^n to denote \vec{x}_1^n (i.e., x_1, \ldots, x_n).

Besides viewing computing devices as mechanisms for computing functions we are also interested in them as mechanisms for computing sets.

- Given a set X the characteristic function of X (denoted by χ_X) is given by
1.1 Preliminaries

A computing device (which computes the function \(f \)) can `compute" a set \(X \) in 3 different ways:

1. it can compute the characteristic function \(\chi_X \) of the set \(X \), i.e., \(f = \chi_X \).

2. its domain is equal to \(X \), i.e., \(X = \text{dom} \ f \). In this case we say that the device is an acceptor (or a recognizer) for the set \(X \).

3. its range is equal to \(X \), i.e., \(X = \text{ran} \ f \). In this case we say that the device is a generator for the set \(X \).
1.2 Representation of Objects

We use \(\mathbb{N} \) to denote the set \{0, 1, 2,...\} of *Natural Numbers*, and we use \(\mathbb{B} \) for the set \{0, 1\} of *Binary Digits*. We are most interested in functions over \(\mathbb{N} \), but in reality numbers are abstract objects and not concrete objects. Therefore it will be necessary to deal with representations of the natural numbers by means of strings over some alphabet.

- An *alphabet* \(\Sigma \) is any finite set of symbols \(\{\sigma_1, ..., \sigma_n\} \). The symbols themselves will be unimportant, so we will use 1 for \(\sigma_1 \), ..., and \(n \) for \(\sigma_n \), and denote by \(\Sigma_n \) the set \{1,..., n\}.

- A *word* over the alphabet \(\Sigma \) is any finite string \(a_1 \cdots a_j \) of symbols from \(\Sigma \) (i.e., \(x = a_1 \cdots a_j \)). We denote by \(\Sigma^* \) the set of *all words* over the alphabet \(\Sigma \).

- The *length* of a word \(x = a_1 \cdots a_j \) (denoted by \(|x|\)) is the number \(j \) of symbols contained in \(x \).

- The *null or empty* word (denoted by \(\varepsilon \)) is the (unique) word of length 0.

- Given two words \(x = a_1 \cdots a_j \) and \(y = b_1 \cdots b_k \), the *concatenation* of \(x \) and \(y \) (denoted by \(x \cdot y \)) is the word \(a_1 \cdots a_j b_1 \cdots b_k \). Clearly, \(|x \cdot y| = |x| + |y|\). We will often omit the \(\cdot \) symbol in the concatenation of \(x \) and \(y \) and simply write \(xy \).

- The word \(x \) is called an *initial segment* (or *prefix*) of the word \(y \) if there is some word \(z \) such that \(y = x \cdot z \).

- For any symbol \(a \in \Sigma \), we use \(a^m \) to denote the word of length \(m \) consisting of \(m \) a's.

- We often refer to a set of strings over an alphabet \(\Sigma \) as a *language*.

- We extend concatenation to sets of strings over an alphabet \(\Sigma \) as follows:

 If \(X, Y \subseteq \Sigma^* \), then

\[
X \cdot Y = \{x \cdot y : x \in X \text{ and } y \in Y\}
\]

\[
X^{(0)} = \{\varepsilon\}
\]

\[
X^{(n + 1)} = X^{(n)} \cdot X, \quad \text{for } n \geq 0
\]
1.2 Representation of Objects

\[X^* = \bigcup_{n=0}^{\infty} X^{(n)} \]

\[X^+ = \bigcup_{n=1}^{\infty} X^{(n)} \]

Thus \(X^{(n)} \) is the set of all "words" of length \(n \) over the "alphabet" \(X \).
1.3 Codings for the Natural Numbers

We will introduce a correspondence between the natural numbers and strings over \(\Sigma_n^* \) which is different from the usual number systems such as binary and decimal representations.

\[
\begin{array}{|c|c|c|c|}
\hline
\mathbb{N} & \mathbb{B}^* & \Sigma_2^* & \Sigma_4^* \\
\hline
0 & 0 & \varepsilon & \varepsilon \\
1 & 1 & 1 & 1 \\
2 & 10 & 2 & 2 \\
3 & 11 & 11 & 3 \\
4 & 100 & 12 & 4 \\
5 & 101 & 21 & 11 \\
6 & 110 & 22 & 12 \\
7 & 111 & 111 & 13 \\
8 & 1000 & 112 & 14 \\
9 & 1001 & 121 & 21 \\
10 & 1010 & 122 & 22 \\
11 & 1011 & 211 & 23 \\
\hline
\end{array}
\]

The codings via \(\Sigma_2^* \) and \(\Sigma_4^* \) are one-to-one and onto. The coding via \(\mathbb{B}^* \) is not -- 010 = 10.

\[\text{The function } \kappa_n : \mathbb{N} \rightarrow \Sigma_n^* , \]

providing the one-to-one and onto map is defined inductively as follows:
1.3 Codings for the Natural Numbers

\[\kappa_n(0) = \varepsilon \]

Next, suppose that \(\kappa_n(x) = d_1 \cdots d_j \), and let \(k \leq j \) be the greatest integer such that \(d_k \neq n \) (so \(k = 0 \) if \(d_1 = \cdots = d_j = n \)). Then,

\[\kappa_n(x + 1) = \begin{cases}
 d_1 \cdots d_{k-1}(d_k + 1)1^{j-k}, & \text{if } k > 0, \\
 1^{j+1}, & \text{otherwise.}
\end{cases} \]

The function \(\nu_n : \Sigma_n^* \rightarrow \mathbb{N} \),

which is the inverse for \(\kappa_n \) is defined as follows:

Let \(x \in \Sigma_n^* \) be the string \(a_j \cdots a_1 a_0 \). Then,

\[\nu_n(x) = \nu_n(a_j \cdots a_1 a_0) \]

\[= \sum_{i=0}^{j} a_i \times n^i \]

\[= a_j \times n^j + \cdots + a_1 \times n + a_0 \]

Observe that

\[\nu_n(x \cdot y) = \nu_n(x) \times n^{|y|} + \nu_n(y), \]

e.g., \(16 = 3 \times 2^2 + 4 = \nu_2(11 \cdot 12) = \nu_2(1112) \).
1.4 Inductive Definition and Proofs

An inductive definition over the natural numbers \mathbb{N} usually takes the form:

\begin{align*}
 f(0, y) &= g(y) \\
 f(n + 1, y) &= h(n, y, f(n, y))
\end{align*}

where g and h are previously defined.

- **Example of inductive definition**

 \begin{align*}
 y^0 &= 1 \\
 y^{n+1} &= y^n \times y
 \end{align*}

 so that $g(y) = 1$ and $h(x, y, z) = zxy$.

- **Definitions involving "..." are usually inductive.**

- **Example of ... definition**

 \[\sum_{i=0}^{n} a_i = a_0 + a_1 + \ldots + a_n \]

 The inductive equivalent is:

 \[\sum_{i=0}^{0} a_i = a_0 \]
so that $g(y) = a_0$ and $h(x, y, z) = z + a_{x+1}$.

Most "recursive" procedures are really just inductive definitions.

Induction Principle I: For any proposition P over \mathbb{N}, if

1) $P(0)$ is true, and

2) $\forall n, P(n) \implies P(n + 1)$ is true,

then $\forall n, P(n)$ is true.

1) is called the **Basis Step**
2) is called the **Induction Step**

The validity of this principle follows by a "Dominoe Principle"

- **$P(0)$ means "0 falls":**

 ![Diagram of a single domino falling](image1)

- **$P(n) \implies P(n + 1)$ means "if n falls, then $n + 1$ falls":**

 ![Diagram of dominoes falling](image2)

Combining these two parts, we see that "all dominoes fall":

\[
\sum_{i=0}^{n+1} a_i = \sum_{i=0}^{n} a_i + a_{n+1}
\]
1.4 Inductive Definition and Proofs

Example of inductive proof

Let $P(n) : \sum_{i=0}^{n} i = \frac{n \times (n+1)}{2}$.

Basis Step:
Show $P(0)$ is true

$$\sum_{i=0}^{0} i = 0 \times (0 + 1) = \frac{0 \times (0 + 1)}{2}$$

Induction Step:
Let n be arbitrary and assume $P(n)$ is true. This assumption is called the *Induction Hypothesis*, viz. that

$$\sum_{i=0}^{n} i = \frac{n \times (n+1)}{2}$$

Then,

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n + 1)$$
1.4 Inductive Definition and Proofs

\[
\begin{align*}
&= \frac{n \times (n + 1) + 2 \times (n + 1)}{2} \\
&= \frac{(n + 1) \times (n + 2)}{2}
\end{align*}
\]

Note: Line 1 uses the inductive definition of \(\sum \) (here \(a_i = i \)).

Line 2 uses the Induction Hypothesis; and

Line 4 is \(P(n + 1) \), so we have shown \(P(n) \rightarrow P(n + 1) \).

By reasoning similar to that for Induction Principle I, we also have

Induction Principle II: For any proposition \(P \) over the positive integers, if

1) \(P(0) \) is true, and

2) \(\forall n, (\forall i < n + 1, P(i)) \rightarrow P(n + 1) \) is true,

then \(\forall n, P(n) \) is true.

Here 2) means ``If 0, 1, 2,..., \(n \) falls, then \(n + 1 \) falls''. Note that ``\(\forall i < n + 1, P(i) \)'' is really shorthand for ``\(\forall i, i < n + 1 \rightarrow P(i) \)''.

Induction Principle II is needed for inductive definitions like the one for the fibonacci numbers:

\[
\begin{align*}
f(0) &= 0 \\
f(1) &= 1 \\
f(n + 1) &= f(n) + f(n - 1)
\end{align*}
\]

However, some domains of interest **do not** have such a ``linear'' structure as the natural numbers. For example, the set \(\mathbb{B}^* \) has a ``tree'' structure:

Figure 1.3: Structure of \(\mathbb{B}^* \)
1.4 Inductive Definition and Proofs

Thus each word $x \in B^*$ has two successors: $x \cdot 0$ and $x \cdot 1$.

Example of inductive definition over Σ^*

The reversal function ρ such that $\rho(a_1 \cdots a_n) = a_n \cdots a_1$ is defined inductively by:

$$\rho(\varepsilon) = \varepsilon$$

$$\rho(x \cdot a) = a \cdot \rho(x)$$

Thus, we see that inductive definitions over Σ^* have the general form:

$$f(\varepsilon, y) = g(y)$$

$$f(x \cdot a, y) = h_a(x, y, f(x, y)), \text{ for each } a \in \Sigma$$

Principle III: For any proposition P over Σ^*, if

1) $P(\varepsilon)$ is true, and
2) \(\forall x \in \Sigma^*, (\forall a \in \Sigma, P(x) \rightarrow P(x \cdot a)) \) is true,
then \(\forall x \in \Sigma^*, P(x) \) is true.

The validity of this principle also follows from a "Dominoe Principle"

- \(P(\varepsilon) \) means "\(\varepsilon \) falls":
- \(P(x) \rightarrow P(x \cdot a) \) means "if \(x \) falls, then \(x \cdot a \) falls":

These combined yield "all dominoes fall" when they are arranged according to the structure of \(\Sigma^* \).

Example of inductive proof over \(\Sigma^* \)

Let \(P(x) \equiv \forall a \in \Sigma, \rho(a \cdot x) = \rho(x) \cdot a \)

Basis Step:
Show \(P(\varepsilon) \) is true

\[
\rho(a \cdot \varepsilon) = \rho(a) = \rho(\varepsilon \cdot a) = a \cdot \rho(\varepsilon) = a \cdot \varepsilon = a = \varepsilon \cdot a = \rho(\varepsilon) \cdot a
\]

Induction Step:
Let \(x \) be arbitrary and assume \(P(x) \) is true, so the Induction Hypothesis is
\[\forall a \in \Sigma, \rho(a \cdot x) = \rho(x) \cdot a \]

Then, for any \(a, b \in \Sigma \)

\[
\rho(a \cdot (x \cdot b)) = \rho((a \cdot x) \cdot b) \\
= b \cdot \rho(a \cdot x) \\
= b \cdot (\rho(x) \cdot a) \\
= (b \cdot \rho(x)) \cdot a \\
= \rho(x \cdot b) \cdot a
\]

So \(P(x \cdot a) \) is true. Therefore, \(\forall x \in \Sigma^*, \forall a \in \Sigma, \rho(a \cdot x) = \rho(x) \cdot a. \)

Note: Lines 1 and 4 use the associativity of \(\cdot \); Lines 2 and 5 use the definition of \(\rho \); and Line 3 use the Induction Hypothesis.
2. Models of Computation

- Memoryless Computing Devices
 - Boolean functions and Expressions
 - Digital Circuits
 - Propositional Logic
- Finite Memory Computing Devices
 - Finite state machines
 - Regular expressions
- Unbounded Memory Devices
 - Loop programs
 - (Partial) recursive functions
 - Random access machines
 - First-order number theory
- Other Aspects
 - Non-deterministic devices
 - Probabilistic devices
2.1 Memoryless Computing Devices

A boolean function is any function \(f : \mathbb{B}^n \rightarrow \mathbb{B}^m \), and thus has the schematic form

\[
\begin{array}{c}
\vdots \\
\end{array}
\]

\[
\begin{array}{c}
x_1 \\
\vdots \\
x_n \\
\end{array}
\rightarrow
\begin{array}{c}
\vdots \\
\end{array}
\leftarrow
\begin{array}{c}
y_1 \\
\vdots \\
y_m \\
\end{array}
\]

Figure 2.1: Multiple input-output computing device

We will be concerned here primarily with the case where \(m = 1 \). Since \(\mathbb{B} \) has finite cardinality, the domain of \(f \) is finite, and \(f \) can be represented by means of a finite table with \(2^n \) entries.

Example 2.1

Table 2.1:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
It is also possible to represent a boolean function by means of a boolean expression. A boolean expression consists of boolean variables \(x_1, x_2, \ldots \), boolean constants (0 and 1), and boolean operations \(\neg, \lor, \land \), and is defined inductively as follows:

1. Any boolean variable \(x_1, x_2, \ldots \) and any boolean constant 0, 1 is a boolean expression;
2. If \(e_1 \) and \(e_2 \) are boolean expressions, then so are \(\neg e_1 \), \(e_1 \lor e_2 \), and \(e_1 \land e_2 \).

The operations \(\neg, \lor, \land \) are defined by the table:

\[
\begin{array}{|c|c|c|c|c|}
\hline
x_1 & x_2 & \neg x_1 & x_1 \lor x_2 & x_1 \land x_2 \\
\hline
0 & 0 & 1 & 0 & 0 \\
0 & 1 & & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & & 1 & 1 \\
\hline
\end{array}
\]

so that \(\neg, \lor, \land \) represent boolean functions. In general, every boolean expression with \(n \) variables represents some boolean function \(f: \mathbb{B}^n \rightarrow \mathbb{B} \).

Conversely, we have

Theorem 2.1 Every boolean function \(f: \mathbb{B}^n \rightarrow \mathbb{B} \) is represented by some boolean expression with \(n \) variables.

Example 2.2

The function given in Example 2.1 above can be represented by the boolean expression
2.1 Memoryless Computing Devices

\[(\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2),\]

i.e.,

\[f(x_1, x_2, x_3) = (\neg x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2).\]

Terminology:

- A literal is either a variable (e.g., \(x_j\)) or its negation (e.g., \(\neg x_j\)).
- A term is a conjunction (i.e., \(e_1 \land \cdots \land e_k\)) of literals \(e_1, \ldots, e_k\).
- A clause is a disjunction (i.e., \(e_1 \lor \cdots \lor e_k\)) of literals \(e_1, \ldots, e_k\).
- A boolean expression is a DNF (disjunctive normal form) expression if it is a disjunction of terms.
- A monomial is a one-term DNF expression.
- A boolean expression is a CNF (conjunctive normal form) expression if it is a conjunction of clauses.

The previous theorem is proved by constructing a DNF expression for any given boolean function.
We can ``implement'' boolean functions using digital logic circuits consisting of ``gates'' which compute the operations \neg, \lor, and \land, and which are depicted as follows:

![Digital logic gates](image1)

Example 2.3 (circuit for function of Example 2.1)

![Digital logic circuit](image2)
2.2 Digital Circuits

Copying for any commercial use including books, journals, course notes, etc., is prohibited.
2.3 Propositional Logic

If we interpret the boolean value 0 as "FALSE" (F) and the boolean value 1 as "TRUE" (T), then the boolean operations become "logical operations" which are defined by the following "truth tables":

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>¬x1</th>
<th>x1 ∨ x2</th>
<th>x1 ∧ x2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

Then the boolean variables become "logical variables", which take on values from the set $V = \{T,F\}$. Analogously, boolean expressions become "logical expressions" (or "propositional sentences"), and are useful in describing concepts.

Example 2.4 Suppose $x_1, x_2, x_3, x_4, x_5, x_6$ are propositional variables which are interpreted as follows:

- x_1 -- "is a large mammal"
- x_2 -- "lives in water"
- x_3 -- "has claws"
- x_4 -- "has stripes"
- x_5 -- "hibernates"
- x_6 -- "has mane"

Then the propositional statement $x_1 \land \neg x_2 \land (x_4 \lor x_5 \lor x_6)$ defines a concept for a class of animals which includes lions and tigers and bears!
2.4 Finite Memory Devices

We construct finite memory devices by adding a finite number of memory cells ("flip-flops"), which can store a single bit (0 or 1), to a logical circuit as depicted below:

Figure 2.4: Finite memory device

Here, \(z_i \) is the current contents of memory cell \(i \), and \(z_i^+ \) is the contents of that memory cell at the next unit of time (i.e., clock cycle).

Of course, memory cells themselves can be realized by digital circuits, e.g., the following circuit realizes a flip-flop:

Figure 2.5: Flip Flop
2.4 Finite Memory Devices

The device operates as follows: At each time step, the current input values \(x_1, \ldots, x_n \) are combined with the current memory values \(z_1, \ldots, z_k \) to produce via the logical circuit the output values \(y_1, \ldots, y_m \) and memory values \(z_1^+, \ldots, z_k^+ \) for the next time cycle. Then, the device uses the next input combination of \(x_1, \ldots, x_n \) and \(z_1, \ldots, z_k \) (i.e., the previously calculated \(z_1^+, \ldots, z_k^+ \)) to compute the next output \(y_1, \ldots, y_m \) and the next memory contents \(z_1^+, \ldots, z_k^+ \), and so on.

Of course, at the beginning of the computation there must be some initial memory values. In this way we see that such a device transforms a string of inputs (i.e., a word over \(\mathbb{B}^* \)) into a string of outputs.

A device that has \(k \) memory cells will have \(2^k \) combinations of memory values or states. Of course, depending on the circuitry, not all combinations will be realizable, so the device may have fewer actual states.

We formalize matters as follows:

- We regard the pattern of bits \(x_1, \ldots, x_n \) as encoding the letters of some input alphabet \(\Sigma \), and similarly \(y_1, \ldots, y_m \) as encoding the letters of some output alphabet \(\Gamma \).
- We let \(Q \) denote the set of possible states (i.e., legal combinations of \(z_1, \ldots, z_k \)).

As indicated above, \(\Sigma, \Gamma, \) and \(Q \) need not have cardinality that is a power of 2.

- Since the output \((y_1, \ldots, y_m) \) depends on the input \((x_1, \ldots, x_n) \) and the current memory state \((z_1, \ldots, z_k) \), we have an output function \(\lambda : Q \times \Sigma \rightarrow \Gamma \).
- Similarly, since the next memory state \((z_1^+, \ldots, z_k^+) \) depends on the input and the current memory
2.4 Finite Memory Devices

state, we have a state transition function $\delta : Q \times \Sigma \rightarrow Q$.
- When the device begins its computation on a given input its memory will be in some initial state q_0.

Therefore, such a device can be abbreviated as a tuple

$$M = \langle \Sigma, \Gamma, Q, \delta, \lambda, q_0 \rangle.$$

We depict M schematically as follows:

Figure 2.6: Schematic for Finite State Automaton

While this model of a finite memory device clearly models the computation of functions $f : \Sigma^* \rightarrow \Gamma^*$ with finite memory, we need only consider a restricted form which are acceptors for languages over Σ^* (i.e., subsets of strings from Σ^*). In this restricted model we replace the output function λ by a set of specially designated states $F \subseteq Q$ called final states. The purpose of F is to indicate which input words are accepted by the device.

Definition 2.1 A deterministic finite state automaton (DFA) is a 5-tuple
\[M = \langle \Sigma, Q, \delta, q_0, F \rangle, \]

where \(\Sigma \) is the input alphabet, \(Q \) is the finite set of states, \(q_0 \) is the initial state, \(F \subseteq Q \) is the set of final states, and \(\delta : Q \times \Sigma \rightarrow Q \) is the state transition function.

- We say that an input \(x = a_1 \ldots a_j \) is accepted by the DFA \(M = \langle \Sigma, Q, \delta, q_0, F \rangle \) if there is a sequence of states \(p_1, \ldots, p_{j+1} \) such that \(p_1 \) is the initial state \(q_0 \) and \(p_{j+1} \in F \) and for each \(i \leq j \), \(\delta(p_i, a_i) = p_{i+1} \).
- We say that a language \(X \subseteq \Sigma^* \) is accepted by the DFA \(M \) if and only if every word \(x \in X \) is accepted by \(M \).
2.5 Regular Languages

The class of regular languages over Σ^* is defined by induction as follows:

1. the sets \emptyset, $\{\varepsilon\}$, and $\{a\}$ for each $a \in \Sigma$ are regular languages;

2. if R_1 and R_2 are regular languages, then so are $R_1 \cup R_2$, $R_1 \cdot R_2$, and R_1^*.

In other words, the class of regular languages is the smallest class of subsets of Σ^* containing \emptyset, $\{\varepsilon\}$, and $\{a\}$ for each $a \in \Sigma$, and closed under the operations of set union, set concatenation, and *.

We define the class of regular expressions for denoting regular sets by induction as follows:

1. \emptyset, ε, and a are regular expressions for \emptyset, $\{\varepsilon\}$, and $\{a\}$, respectively;

2. if r_1 and r_2 are regular expressions for the regular sets R_1 and R_2, then $(r_1 \cup r_2)$, $(r_1 \cdot r_2)$, and (r_1^*) are regular expressions for $R_1 \cup R_2$, $R_1 \cdot R_2$, and R_1^*, respectively.

Theorem 2.2 Every regular language is accepted by some deterministic finite automaton, and conversely every language accepted by some deterministic finite automaton is a regular language.
3. Loop Programs

The programming language \textit{LOOP} over Σ^*_k consists of:

- **Program Variables:**

 X_1, X_2, X_3, \ldots (also U, V, W, Y, Z with subscripts)

- **Elementary Statements:**

 - **Input Statements:**

 $\text{INPUT}(X_1, \ldots, X_n)$

 - **Output Statements:**

 $\text{OUTPUT}(Y_1)$

 - **Assignment Statements:**

 - $X_1 \leftarrow 0$
 - $X_1 \leftarrow X_1 + 1$
 - $X_1 \leftarrow Y_1$

- **Control Structures:**

 - **For Statements:**
3. Loop Programs

FOR X_1 TIMES DO

.
.
.

ENDFOR

Until Statements:

UNTIL X_1 TRUE DO

.
.
.

ENDUNTIL

3.1 Semantics of LOOP Programs
3.2 Other Aspects
3.3 Complexity of LOOP Programs
3.1 Semantics of *LOOP* Programs

\([X_1]\) denotes the contents of the variable \(X_1\).

- **logical values:**
 - *FALSE* is zero
 - *TRUE* is any non-zero value

- **INPUT(\(X_1, \ldots, X_n\))**
 -- input \([X_1], \ldots, [X_n]\)

- **OUTPUT(\(Y_1\))**
 -- output \([Y_1]\)

- \(X_1 \leftarrow 0\)
 -- replace \([X_1]\) with \(\varepsilon\)

- \(X_1 \leftarrow X_1 + 1\)
 -- replace \([X_1]\) with \(x\), where \(\nu_k(x) = \nu_k([X_1]) + 1\)

- \(X_1 \leftarrow Y_1\)
 -- replace \([X_1]\) with \([Y_1]\)

- **For Statement:**

\[
\text{FOR } X_1 \text{ TIMES DO}
\]
3.1 Semantics of LOOP Programs

body

ENDFOR

-- repeat body of loop \(\nu_k([X_1]) \) times

Until Statement:

UNTIL \(X_1 \) TRUE DO

body

ENDUNTIL

-- repeat body of loop until \([X_1] \neq \varepsilon\)

Definition 3.1 A LOOP-program over \(\Sigma_k^* \) is a sequence of LOOP statements \(S_1, \ldots, S_n \) such that

1. \(S_1 \) is an input statement
2. \(S_n \) is an output statement
3. and none of \(S_2, \ldots, S_{n-1} \) are input or output statements.

Definition 3.2 A LOOP-program \(P \) over \(\Sigma_k^* \) computes the (partial) function \(f : (\Sigma_k^*)^n \rightarrow \Sigma_k^* \) if and only if

1. the input statement of \(P \) has \(n \) variables;

2.
for all x_1, \ldots, x_n, when P is executed \(\uparrow\) with x_1, \ldots, x_n as its input,

(a) P halts if and only if $f(x_1, \ldots, x_n) \downarrow$,

(b) if P halts, then P outputs $f(x_1, \ldots, x_n)$.

\(\uparrow\) Execution of a $LOOP$ program involves:

1. initially all variables have value 0
2. statements are executed according to the "obvious" semantics in the "obvious" order.

\(\spadesuit\) Observe that the choice of alphabet Σ_k enters into consideration only through I/O and the "internal representation" or "semantics" of the program. We could have taken as our primitive operation $X_1 \cdot a$ (for each $a \in \Sigma_k$ instead of $X_1 + 1$ and then the choice of Σ_k would have been much more evident.

Example 3.1 The following program computes the function $f(x) = x \div 1$, where the operation \div (called "monus") is defined by:

$$x \div y = \begin{cases} 0, & \text{if } x \leq y, \\ x - y, & \text{otherwise}. \end{cases}$$

\textbf{INPUT}(X_1) \\
\textbf{FOR} X_1 \text{ TIMES DO} \\
\quad Z_1 \leftarrow Y_1 \\
\quad Y_1 \leftarrow Y_1 + 1
Notation 3.3 Let P be a LOOP-program with input statement
\[\text{INPUT}(X_1, \ldots, X_n) \] and output statement \[\text{OUTPUT}(Y_1). \] We denote by P^- the result of removing from P its input and output statements, and we denote by $U_1 \leftarrow P(V_1, \ldots, V_n)$ the sequence of statements:

\[
X_1 \leftarrow V_1 \\
\vdots \\
X_n \leftarrow V_n \\
P^- \\
U_1 \leftarrow Y_1
\]

We can implement other control structures using \textsc{for} and \textsc{until} loops. First, we need a program BLV for the function blv ("Boolean / Logical Value") defined by:

\[
blv(x) = \begin{cases}
1, & \text{if } x > 0, \\
0, & \text{otherwise.}
\end{cases}
\]

and we need a program NEG for the function neg ("logical negation") defined by:

\[
eg(x) = \begin{cases}
0, & \text{if } x > 0, \\
1, & \text{otherwise.}
\end{cases}
\]
3.1 Semantics of LOOP Programs

INPUT(X_1)

$Z_1 \leftarrow 0$

FOR X_1 TIMES DO

$Z_1 \leftarrow 0$

$Z_1 \leftarrow Z_1 + 1$

ENDFOR

OUTPUT(Z_1)

and the program NEG is given by:

INPUT(X_1)

$X_1 \leftarrow BLV(X_1)$

$Z_2 \leftarrow Z_2 + 1$

FOR X_1 TIMES DO

$Z_2 \leftarrow 0$

ENDFOR

OUTPUT(Z_2)

Then the if-then-else control structure, that takes the form

IF X_1 TRUE THEN

S_1

ELSE

S_2

ENDIF
where S_1 and S_2 stand for lists of statements, can be implemented by:

\[
X_2 \leftarrow \text{BLV}(X_1)
\]
\[
\text{FOR } X_2 \text{ TIMES DO}
\]
\[
S_1
\]
\[
\text{ENDDO}
\]
\[
X_2 \leftarrow \text{NEG}(X_2)
\]
\[
\text{FOR } X_2 \text{ TIMES DO}
\]
\[
S_2
\]
\[
\text{ENDDO}
\]
3.2 Other Aspects

- We can construct *non-deterministic* LOOP programs by adding statements of the form

\[
\text{SELECT}(X_1)
\]

which assigns either a 0 or a 1 non-deterministically to the variable \(X_1 \).

- We can construct *probabilistic* LOOP programs by adding statements of the form

\[
\text{PRASSIGN}(X_1)
\]

which assigns either a 0 or a 1 probabilistically with probability \(\frac{1}{2} \) to the variable \(X_1 \).

We distinguish between deterministic, non-deterministic, and probabilistic LOOP programs by using the notation DLOOP, NLOOP, and PLOOP, respectively.
3.3 Complexity of LOOP Programs

Definition 3.4 If P is a deterministic LOOP program (a program without SELECT or PRASSIGN statements) over \sum_k with input variables X_1, \ldots, X_n and all variables included in X_1, \ldots, X_r, then we define the following complexity measures for P.

$$\mathit{DLPtime}_P(x^n) = \begin{cases} \sum_{i=1}^{n} |x_i| + \# \text{ of stmts of } P \text{ executed on input } x^n, \\ \uparrow, \text{ otherwise.} \end{cases}$$

$$\mathit{DLPspace}_P(x^n) = \begin{cases} \max \sum_{i=1}^{r} |X_i^t|, \forall t \leq \mathit{DLPtime}_P(x^n), \text{ if } P \text{ halts,} \\ \uparrow, \text{ otherwise.} \end{cases}$$

where X_i^t denotes the contents of register X_i at step t of the computation of P on input x^n.
4. Primitive Recursive Functions

The class of primitive recursive functions is defined inductively as follows:

- **Base functions:**
 - **Null function:**
 \[N(x) = 0, \text{ for any } x \in \mathbb{N} \]
 - **Successor function:**
 \[S(x) = x + 1, \text{ for any } x \in \mathbb{N} \]
 - **Projection functions:**
 \[P_{j}^{n}(\vec{x}^{n}) = x_{j}, \text{ for any } 1 \leq j \leq n, \text{ and any } \vec{x}^{n} \in \mathbb{N}^{n} \]

- **Operations:**
 - **Substitution:**
 Given integers \(m \) and \(n \), and functions \(g : \mathbb{N}^{m} \rightarrow \mathbb{N} \), and \(h_{1}, ..., h_{m} \), where \(h_{j} : \mathbb{N}^{n} \rightarrow \mathbb{N} \), then \(f : \mathbb{N}^{n} \rightarrow \mathbb{N} \) is defined from \(g, h_{1}, ..., h_{m} \) via substitution if for any \(\vec{x}^{n} \in \mathbb{N}^{n} \),
 \[f(\vec{x}^{n}) = g(h_{1}(\vec{x}^{n}), ..., h_{m}(\vec{x}^{n})). \]

- **Primitive recursion:**
Given an integer n, and functions $g : \mathbb{N}^{n-1} \rightarrow \mathbb{N}$, and $h : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$, then $f : \mathbb{N}^n \rightarrow \mathbb{N}$ is defined from g and h via primitive recursion if for any $y \in \mathbb{N}$ and any $\vec{x}_2^n \in \mathbb{N}^{n-1}$,

\[
\begin{align*}
 f(0, \vec{x}_2^n) &= g(\vec{x}_2^n) \\
 f(y+1, \vec{x}_2^n) &= h(y, f(y, \vec{x}_2^n), \vec{x}_2^n).
\end{align*}
\]

Definition 4.1 A function $f : \mathbb{N}^n \rightarrow \mathbb{N}$ is primitive recursive if it can be obtained from the base functions (null, successor, and projections) by finitely many applications of the operations of substitution and primitive recursion.

- Thus, the class of primitive recursive functions is the smallest class containing the base functions and closed under the operations of substitution and primitive recursion.
- If in the definition of primitive recursion $n = 1$, then the schema takes the form:

\[
\begin{align*}
 f(0) &= c \\
 f(y+1) &= h(y, f(y))
\end{align*}
\]

for some constant c and some function h.

- We could have defined the primitive recursive functions over Σ_k^* instead of \mathbb{N} by replacing S with k successors $S_a(y) = y \cdot a$ for each $a \in \Sigma_k$; and by replacing primitive recursion over \mathbb{N} with primitive recursion over Σ_k^* which takes the form:

\[
\begin{align*}
 f(\epsilon, \vec{x}_2^n) &= g(\vec{x}_2^n) \\
 f(y \cdot a, \vec{x}_2^n) &= h_a(y, f(y, \vec{x}_2^n), \vec{x}_2^n) \quad \forall a \in \Sigma_k
\end{align*}
\]
4. Primitive Recursive Functions

- Addition is primitive recursive as seen by the following application of the operation of primitive recursion:

\[
\begin{align*}
0 + x &= x \\
y + 1 + x &= (y + x) + 1
\end{align*}
\]

Actually, the formal definition takes the form (where \(add(y, x) = y + x \))

\[
\begin{align*}
add(0, x) &= P^1_1(x) \\
add(y + 1, x) &= S(P^3_2(y, add(y, x), x))
\end{align*}
\]

- We can then define multiplication (\(mult(y, x) = y \times x \)) using primitive recursion applied to the null function and addition:

\[
\begin{align*}
mult(0, x) &= N(x) \\
mult(y + 1, x) &= add(P^3_2(y, mult(y, x), x), P^3_3(y, mult(y, x), x))
\end{align*}
\]

or less formally,

\[
\begin{align*}
0 \times x &= 0 \\
y + 1 \times x &= (y \times x) + x
\end{align*}
\]

- Sometimes, as is the case with addition and multiplication, it is more natural or convenient to allow the recursive definition to occur over a variable other than the first variable. This is permissible since we can use the projection functions to rearrange the variables in any order we wish. For example, we can define the function

\[
\begin{align*}
add'(x, y) &= add(P^2_2(x, y), P^2_1(x, y)) \\
&= add(y, x)
\end{align*}
\]

so that in effect we have:
\[
\begin{align*}
 x + 0 &= x \\
 x + y + 1 &= (x + y) + 1
\end{align*}
\]

- The function \(blv \) is also primitive recursive:

\[
\begin{align*}
 blv(0) &= 0 \\
 blv(y + 1) &= S(N(P_{1}^{2}(y, blv(y))))
\end{align*}
\]

Or, formally

\[
\begin{align*}
 blv(0) &= 0 \\
 blv(y + 1) &= S(N(P_{1}^{2}(y, blv(y))))
\end{align*}
\]

- Similarly, the function \(neg \) is primitive recursive

\[
\begin{align*}
 neg(0) &= 1 \\
 neg(y + 1) &= 0
\end{align*}
\]

Proposition 4.1 Every primitive recursive function is a total function, i.e., defined on all natural numbers.

Proof: The proof is by induction on the definition of a primitive recursive function \(f \). Clearly, all the base functions are total functions. Next, if \(f \) is defined by substitution from \(g \) and \(h_{1},..., h_{m} \), then \(f \) is total whenever \(g \) and \(h_{1},..., h_{m} \) are total.

Suppose \(f \) is defined by primitive recursion from \(g \) and \(h \), and suppose by induction hypothesis that \(g \) and \(h \) are total functions. We prove by induction that for every \(y \in \mathbb{N}, f(y, \vec{x}_{2}^{n}) \downarrow \). First, \(f(0, \vec{x}_{2}^{n}) \downarrow \), since \(f(0, \vec{x}_{2}^{n}) = g(\vec{x}_{2}^{n}) \) and \(g \) is total. Next, assuming that \(f(y, \vec{x}_{2}^{n}) \downarrow \), we see that \(f(y + 1, \vec{x}_{2}^{n}) \downarrow \), since \(f(y + 1, \vec{x}_{2}^{n}) = h(y, f(y, \vec{x}_{2}^{n}), \vec{x}_{2}^{n}) \) and \(h \) is total.
4. Primitive Recursive Functions

- 4.1 Primitive Recursive Expressibility
- 4.2 Equivalence between models
- 4.3 Primitive Recursive Expressibility (Revisited)
- 4.4 General Recursion
- 4.5 String Operations
- 4.6 Coding of Tuples
4.1 Primitive Recursive Expressibility

An \(n \)-ary predicate on \(\mathbb{N} \) is a subset of \(\mathbb{N}^n \)

\[
P(\vec{x}^n) \text{ is TRUE} \iff \vec{x}^n \in P
\]

i.e., \(P = \{ \vec{x}^n : P(\vec{x}^n) \text{is TRUE} \} \).

Thus sets and predicates are interchangeable. The characteristic function of a predicate \(P \) is the function \(\chi_P \) defined by

\[
\chi_P(\vec{x}^n) = \begin{cases}
1, & \text{if } \vec{x}^n \in P \\
0, & \text{otherwise.}
\end{cases}
\]

Definition 4.2 A predicate \(P \) is *primitive recursive* if and only if \(\chi_P \) is primitive recursive.

Conversely, given any 0-1 valued function \(f \), we can associate with a predicate \(P_f \) and a set \(S_f \) defined by

\[
P_f(\vec{x}^n) \text{ is TRUE} \iff f(\vec{x}^n) = 1
\]

\[
S_f = \{ \vec{x}^n : f(\vec{x}^n) = 1 \}
\]
Proposition 4.2 If \(P \) and \(Q \) are primitive recursive predicates with the same number of variables, then so are \(\neg P, P \land Q, \) and \(P \lor Q \).

Proof: The characteristic functions of these predicates are given in terms of \(\chi_P \) and \(\chi_Q \) as follows:

\[
\chi_{\neg P} (\vec{x}^n) = \neg(\chi_P (\vec{x}^n))
\]

\[
\chi_{P \land Q} (\vec{x}^n) = \chi_P (\vec{x}^n) \times \chi_Q (\vec{x}^n)
\]

\[
\chi_{P \lor Q} (\vec{x}^n) = \bl(\chi_P (\vec{x}^n) + \chi_Q (\vec{x}^n))
\]

Proposition 4.3 If \(P_1, \ldots, P_m \) are pairwise disjoint primitive recursive predicates over \(\mathbb{N}^n \) and \(f_1, \ldots, f_m + 1 \) are primitive recursive functions over \(\mathbb{N}^n \), then so is the function \(g : \mathbb{N}^n \rightarrow \mathbb{N} \) defined by

\[
g(\vec{x}^n) = \begin{cases}
 f_1(\vec{x}^n), & \text{if } P_1(\vec{x}^n), \\
 \vdots & \\
 \vdots & \\
 f_m(\vec{x}^n), & \text{if } P_m(\vec{x}^n), \\
 f_{m+1}(\vec{x}^n), & \text{otherwise}.
\end{cases}
\]

Proof:
\[g(\vec{x}^n) = (f_1(\vec{x}^n) \times \chi_{P_1}(\vec{x}^n)) + \ldots + (f_m(\vec{x}^n) \times \chi_{P_m}(\vec{x}^n)) + (f_{m+1}(\vec{x}^n) \times \chi_{\neg(P_1 \lor \ldots \lor P_m)}(\vec{x}^n)) \]

Definition 4.3 (Bounded Quantifiers) If \(P(y, \vec{z}^n) \) is a \(n+1 \)-ary predicate, then we define the \(n+1 \)-ary predicates \(\exists y \leq x P(y, \vec{z}^n) \) and \(\forall y \leq x P(y, \vec{z}^n) \) as follows:

\[
\exists y \leq x P(y, \vec{z}^n) \iff \text{there is some } y \leq x \text{ such that } P(y, \vec{z}^n)
\]
\[
\forall y \leq x P(y, \vec{z}^n) \iff \text{for all } y \leq x, P(y, \vec{z}^n)
\]

We abbreviate \(\exists y \leq x P(y, \vec{z}^n) \) by \(\exists y \leq x P \) and \(\forall y \leq x P(y, \vec{z}^n) \) by \(\forall y \leq x P \).

Proposition 4.4 If \(P \) is a primitive recursive predicate, then so are \(\exists y \leq x P \) and \(\forall y \leq x P \).

Proof: We show only that \(\chi_{\exists y \leq x P(y, \vec{z}^n)} \) is primitive recursive, since

\[
\forall y \leq x P(y, \vec{z}^n) = \neg \exists y \leq x \neg P(y, \vec{z}^n).
\]

\(\chi_{\exists y \leq x P} \) (which we abbreviate by \(\chi_{\exists \leq P} \)) is defined as follows:

\[
\chi_{\exists \leq P}(0, \vec{z}^n) = \chi_P(0, \vec{z}^n)
\]
4.1 Primitive Recursive Expressibility

\[
X_{\exists \leq P} (x + 1, \vec{z}^n) = X_{\exists y \leq xP} (x, \vec{z}^n) \lor X_P (x + 1, \vec{z}^n)
\]

\[
= \text{blv}(\text{add}(P_2^n + 2(x, X_{\exists y \leq xP} (x, \vec{z}^n), \vec{z}^n),

X_P (S(P_1^n + 2(x, X_{\exists y \leq xP} (x, \vec{z}^n), \vec{z}^n)),

P_3^n + 2(x, X_{\exists y \leq xP} (x, \vec{z}^n), \vec{z}^n),...,

P_n + 2n + 2(x, X_{\exists y \leq xP} (x, \vec{z}^n), \vec{z}^n)))}
\]
4.2 Equivalence between models

In order to compare primitive recursive functions with functions computed by $LOOP$ programs over Σ_k^* we need to interpret functions computed by such programs as functions over \mathbb{N}.

Definition 4.4 Let P be a $LOOP$ program over Σ_k^* and let $f_p : (\Sigma_k^*)^n \rightarrow \Sigma_k^*$ be the function computed by P. The we say that P computes the numer-theoretic function $f : \mathbb{N}^n \rightarrow \mathbb{N}$, where

$$f(x^n) = \nu_k (f_P(k_1(x_1),...,k_n(x_n)))$$

Theorem 4.5 Every primitive recursive function is computed by some $LOOP$ program which contains no $UNTIL$ loops.

Proof: We prove this by induction on the number of operations used in the definition of the given primitive recursive function f.

Induction basis:

Base functions

Case 1:

The null function N is computed by the program

```
INPUT(\mathbf{X}_1)
\mathbf{X}_1 \leftarrow 0
OUTPUT(\mathbf{X}_1)
```

Case 2:

The successor function S is computed by the program

```
INPUT(\mathbf{X}_1)
\mathbf{X}_1 \leftarrow \mathbf{X}_1 + 1
OUTPUT(\mathbf{X}_1)
```
4.2 Equivalence between models

Case 3:
The projection function P_j^n is computed by the program

Induction step:
Operations

Case 1:
Suppose

$$f(\vec{x}^n) = g(h_1(\vec{x}^n), \ldots, h_m(\vec{x}^n)).$$

and let P, Q_1, \ldots, Q_m be LOOP programs (without UNTIL loops) for g, h_1, \ldots, h_m, respectively. The following program computes f, where $Z_1, \ldots, Z_m, Y_1, \ldots, Y_n$ and W_1 are new program variables which do not occur in any of P, Q_1, \ldots, Q_m.

INPUT (Y_1, \ldots, Y_n)

$Z_1 \leftarrow Q_1(Y_1, \ldots, Y_n)$

\[\vdots \]

$Z_m \leftarrow Q_m(Y_1, \ldots, Y_n)$

$W_1 \leftarrow P(Z_1, \ldots, Z_m)$

OUTPUT (X_j)
4.2 Equivalence between models

OUTPUT (W₁)

Case 2:
Suppose

\[f(0, \overrightarrow{x}_2^n) = g(\overrightarrow{x}_2^n) \]

\[f(y + 1, \overrightarrow{x}_2^n) = h(y, f(y, \overrightarrow{x}_2^n), \overrightarrow{x}_2^n). \]

for \(y \in \mathbb{N} \) and \(\overrightarrow{x}_2^n \in \mathbb{N}^{n-1} \), and suppose P and Q are LOOP programs (without UNTIL loops) for g and h, respectively. The following program computes f, where \(Y_1, \ldots, Y_n, Z_1 \), and W₁ are new program variables not occurring in P or Q.

INPUT (Y₁, ..., Yₙ)

\[Z_1 \leftarrow P(Y_2, \ldots, Y_n) \]

\[W_1 \leftarrow 0 \]

FOR Y₁ TIMES DO

\[Z_1 \leftarrow Q(W_1, Z_1, Y_2, \ldots, Y_n) \]

\[W_1 \leftarrow W_1 + 1 \]

ENDFOR

OUTPUT (Z₁)

The above proof is really an informal proof, since we haven't proved formally that the programs are correct. We do that now.

Induction basis:
Base functions

Case 1:
4.2 Equivalence between models

\textbf{INPUT}(X_1)

\textbf{X}_1 \leftarrow 0

\textbf{OUTPUT}(X_1)

The output of this program is always \(\varepsilon \), and since \(\nu_k(\varepsilon) = 0 \), this program correctly computes the null function \(N \).

\. Case 2:

\textbf{INPUT}(X_1)

\textbf{X}_1 \leftarrow \textbf{X}_1 + 1

\textbf{OUTPUT}(\textbf{X}_1)

Let \(x \in \mathbb{N} \) be the input to \(S \), then the input to this program is \(\kappa_k(x) \), and the output is that string \([X_1]\) such that

\[\nu_k([X_1]) = \nu_k(\kappa_k(x)) + 1 = x + 1 = S(x) \]

\. Case 3:

\textbf{INPUT}(X_1, \ldots, X_n)

\textbf{OUTPUT}(X_j)

Given input \(\vec{x}^n \in \mathbb{N}^n \) to \(P_j^n \), the output of this program is \(\kappa_k(x_j) \), and since \(\nu_k(\kappa_k(x_j)) = x_j = P_j^n(\vec{x}^n) \), the program is correct.

\. Induction step:
Operations

Case 1:

\[
\text{INPUT}(Y_1,\ldots,Y_n) \\
Z_1 \leftarrow Q_1(Y_1,\ldots,Y_n) \\
\cdot \cdot \cdot \\
Z_m \leftarrow Q_m(Y_1,\ldots,Y_n) \\
w_1 \leftarrow P(Z_1, \ldots, Z_m) \\
\text{OUTPUT}(w_1)
\]

The **Induction Hypothesis** is that

\[
g(\vec{y}^m) = \nu_k(f_p(\kappa_k(y_1),\ldots,\kappa_k(y_m)))
\]

and for each \(1 \leq j \leq m\)

\[
h_j(\vec{x}^n) = \nu_k(f_{Q_j}(\kappa_k(x_1),\ldots,\kappa_k(x_n)))
\]

Given inputs \(\vec{x}^n \in \mathbb{N}^n\) to \(f\), at the end of this program

\[
[Z_j] = f_{Q_j}(\kappa_k(x_1),\ldots,\kappa_k(x_n)) \text{ for all } 1 \leq j \leq m, \text{ and hence}
\]

\[
\nu_k([w_1]) = \nu_k \circ f_p(f_{Q_1}(\kappa_k(x_1),\ldots,\kappa_k(x_n)),\ldots,

\cdot f_{Q_m}(\kappa_k(x_1),\ldots,\kappa_k(x_n)))
\]

\[
= \nu_k \circ f_p(\kappa_k \circ \nu_k \circ f_{Q_1}(\kappa_k(x_1),\ldots,\kappa_k(x_n)),\ldots,
\]

4.2 Equivalence between models

\[
\kappa_k \circ \nu_k \circ f_{Q_m}(\kappa_k(x_1), \ldots, \kappa_k(x_n))
\]

\[
= \nu_k \circ f_p(\kappa_k \circ h_1(\vec{x}^n), \ldots,
\]

\[
\kappa_k \circ h_m(\vec{x}^n))
\]

\[
= g(h_1(\vec{x}^n), \ldots, h_m(\vec{x}^n))
\]

\[
= f(\vec{x}^n)
\]

where \(\circ\) denotes the operation of function composition.

Case 2:
(Left as an exercise)

Theorem 4.6 Every number-theoretic function computed by a \(\text{LOOP}\) program without \(\text{UNTIL}\) loops is primitive recursive.

Proof: Let \(P\) be a given \(\text{LOOP}\) program without \(\text{UNTIL}\) loops of the form:

\[
\text{INPUT}(X_1, \ldots, X_n)
\]

\[
P^-
\]

\[
\text{OUTPUT}(X_k)
\]

Let \(X_1, \ldots, X_r\) be a list of all the variables occurring in \(P\), and let \(Y_1, \ldots, Y_m\) be a list of `imaginary" loop control variables needed by the internal implementation of \(\text{FOR}\) loops. We define by induction on the number of steps used in the construction of \(P\) a set of primitive recursive functions \(f_{P,j}\) of \(r + m\) variables such that if \(\vec{x}^r\) and \(\vec{y}^m\) are the values of the variables \(X_1, \ldots, X_r\) and \(Y_1, \ldots,
4.2 Equivalence between models

\(Y_m \) at the beginning of the execution of \(P^- \), then for each \(1 \leq j \leq r, f_{P^j}(\vec{x}, \vec{y}^m) \) is the (numerical) value of the variable \(X_j \) at the end of the execution of \(P^- \), and similarly for each \(1 \leq j \leq m, f_{P^r + j}(\vec{x}, \vec{y}^m) \) is the value of the imaginary loop control variable \(Y_j \) at the end of the execution of \(P^- \). Of course, if \(P^- \) doesn't halt (which it will always do), then the value of \(f_{P^r + j}(\vec{x}, \vec{y}^m) \) is undefined.

Having defined \(f_{P^j} \), then the primitive recursive function which \(P \) computes is given by

\[
f(\vec{x}^n) = f_{P^k}(\vec{x}^n, 0, \ldots, 0)
= f_{P^k}(P^1_n(\vec{x}^n), \ldots, P^n_n(\vec{x}^n), N^n(\vec{x}^n), \ldots, N^n(\vec{x}^n))
\]

where \(N^n(\vec{x}^n) = N(P^1_n(\vec{x}^n)) = 0. \)

Induction basis:

- **Case 1:**

 \(P^- \) is \(X_i \leftarrow 0 \). Then,

 \[
f_{P^j}(\vec{x}, \vec{y}^m) = N^r + m(\vec{x}, \vec{y}^m)
\]

 and for all \(j \neq i, \)

 \[
f_{P^j}(\vec{x}, \vec{y}^m) = P^r + m(\vec{x}, \vec{y}^m)
\]
4.2 Equivalence between models

Case 2:

P is $X_i \leftarrow X_i + 1$. Then,

$$f_{P-i}(\vec{x}_r, \vec{y}_m) = S(P^r + m(\vec{x}_r, \vec{y}_m))$$

and for all $j \neq i$,

$$f_{P-j}(\vec{x}_r, \vec{y}_m) = P^r + m(\vec{x}_r, \vec{y}_m)$$

Case 3:

P is $X_i \leftarrow X_i$. Then,

$$f_{P-i}(\vec{x}_r, \vec{y}_m) = P^r + m(\vec{x}_r, \vec{y}_m)$$

and for all $j \neq i$,

$$f_{P-j}(\vec{x}_r, \vec{y}_m) = P^r + m(\vec{x}_r, \vec{y}_m)$$

Induction step:

Case 1:

P is of the form:

P_1

P_2
4.2 Equivalence between models

where, of course P_1 and P_2 are lists of LOOP statements which do not include any I/O statements (or UNTIL loops). Then,

$$f_P^j(\overrightarrow{x^r, y^m}) = f_{P_2}^j(f_{P_1}^1(\overrightarrow{x^r, y^m}),..., f_{P_1}^{r+m}(\overrightarrow{x^r, y^m})).$$

Case 2:

P^- is of the form:

\begin{verbatim}
FOR X_i TIMES DO

Q

ENDFOR
\end{verbatim}

Suppose that this is the t^{th} FOR loop thus far encountered in the construction of P^-. We first define via primitive recursion a set of primitive recursive functions g_Q^j of $r+ m$ arguments such that if $\overrightarrow{x^r, y^m}$ are the values of the variables before entering this FOR loop, then $g_Q^j(\overrightarrow{x^r, y_1,..., y_{t,..., y^m}})$ is the value of the j^{th} variable after y_t consecutive executions of the loop body Q. First,

$$g_Q^{r+t}(\overrightarrow{x^r, y^m}) = P_{r+t}^{r+m}(\overrightarrow{x^r, y^m}).$$

Next, for $j \neq r+t$,

$$g_Q^j(\overrightarrow{x^r, y_1,..., 0,..., y^m}) = P_j^{r+m}(\overrightarrow{x^r, y^m})$$

$$g_Q^j(\overrightarrow{x^r, y_1,..., y_{t+1},...y^m}) = f_Q^j(g_Q^1(\overrightarrow{x^r, y_1,..., y_{t,..., y^m}}),...,$$
4.2 Equivalence between models

\[g_Q^{r+m}(\vec{x}^r, y_1, \ldots, y_m). \]

Then, the primitive recursive function \(f_{P-j} \) is defined by

\[f_{P-j}(\vec{x}^r, \vec{y}^m) = g_Q^j(\vec{x}^r, y_1, \ldots, P_i^{r+m}(\vec{x}^r, \vec{y}^m), \ldots, y_m). \]

\[\blacklozenge \] Technically, the "recursive" definition of \(g_Q^j \) is **not** primitive recursive, since for each \(j \), the definition of \(g_Q^j \) depends on \(g_Q^1, \ldots, g_Q^{r+m} \), i.e., on all \(g_Q^j \). This is an example of the "simultaneous inductive definition" of a set of functions. We will show that this form of recursion as well as other general forms of recursion are all constructible from primitive recursive functions.
4.3 Primitive Recursive Expressibility (Revisited)

Definition 4.5 (Bounded Minimization) The function $f : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ is obtained from the predicate P of $n+1$ arguments by *bounded minimization* if for all x, z^n

$$f(x, z^n) = \begin{cases} m, & \text{where } m \text{ is the least number } \leq x \text{ such that } P(m, z^n) \\ x + 1, & \text{otherwise.} \end{cases}$$

We use $f(x, z^n) = \min y \preceq x[P(y, z^n)]$ to denote that f is obtained from P via bounded minimization.

Proposition 4.7 If P is a primitive recursive predicate, then so is any function f obtained from P via bounded minimization.

Proof: If $f(x, z^n) = \min y \preceq x[P(y, z^n)]$, then we define f by induction as follows:

$$f(0, z^n) = 1 - \chi_P(0, z^n)$$

$$f(x + 1, z^n) = \begin{cases} f(x, z^n), & \text{if } \exists y \preceq x[P(y, z^n)] \\ x + 1, & \text{otherwise if } P(x + 1, z^n) \\ x + 2, & \text{otherwise.} \end{cases}$$
Proposition 4.8 Integer division is primitive recursive.

Proof:

\[x/y = \min z \leq x[(z + 1) \times y > x]. \]
4.4 General Recursion

Definition 4.6 Given functions $g : \mathbb{N}^n \to \mathbb{N}$, $h : \mathbb{N}^{n+2} \to \mathbb{N}$, and a total function $r : \mathbb{N} \to \mathbb{N}$ such that $r(0) = 0$ and $r(x) < x$ for all $x > 0$, then $f : \mathbb{N}^{n+1} \to \mathbb{N}$ is defined from g, h and r via recursion, if for any $\vec{x}^n \in \mathbb{N}^n$

\[
\begin{align*}
 f(0, \vec{x}^n) &= g(\vec{x}^n) \\
 f(y, \vec{x}^n) &= h(y, f(r(y), \vec{x}^n), \vec{x}^n) \quad \text{for any } y > 0.
\end{align*}
\]

Proposition 4.9 If f is defined by recursion from (primitive / partial) recursive functions g, h, and r, then f is (primitive / partial) recursive.

Proof: First define the function r^* by

\[
\begin{align*}
 r^*(0, x) &= x \\
 r^*(y + 1, x) &= r(r^*(y, x))
\end{align*}
\]

and the function q by

\[
q(x) = \min y \leq x [r^*(y, x) = 0]
\]

The value $q(y)$ specifies the number of steps in the building-up process for $f(y, \vec{x}^n)$.

Since r is total (primitive) recursive and $r(x) < x$ for any $x > 0$, we see that r^* and q are also total (primitive) recursive. Also, $q(x) = 0 \iff x = 0$. Next define the (primitive / partial) recursive function
4.4 General Recursion

H as follows:

$$
H(0, y, z, \vec{x}^n) = z
$$

$$
H(m + 1, y, z, \vec{x}^n) = h(r^*(q(y) \rightarrow (m + 1), y), H(m, y, z, \vec{x}^n), \vec{x}^n)
$$

We prove by induction for all $m \leq q(y)$ that

$$
H(m, y, g(\vec{x}^n), \vec{x}^n) = f(r^*(q(y) \rightarrow m, y), \vec{x}^n)
$$

from which it follows

$$
f(y, \vec{x}^n) = H(q(y), y, g(\vec{x}^n), \vec{x}^n)
$$

so that f is (primitive / partial) recursive.

Induction basis:

$$
H(0, y, g(\vec{x}^n), \vec{x}^n) = g(\vec{x}^n)
$$

$$
= f(0, \vec{x}^n) = f(r^*(q(y), y), \vec{x}^n)
$$

Induction step:

Suppose that $H(m, y, g(\vec{x}^n), \vec{x}^n) = f(r^*(q(y) \rightarrow m, y), \vec{x}^n)$, then
\[H(m + 1, y, g(\overrightarrow{x}^n), \overrightarrow{x}^n) = h(r^*(q(y) \cdot (m + 1), y), H(m, y, g(\overrightarrow{x}^n), \overrightarrow{x}^n), \overrightarrow{x}^n) \]
\[= h(r^*(q(y) \cdot (m + 1), y), f(r^*(q(y) \cdot m, y), \overrightarrow{x}^n), \overrightarrow{x}^n) \]
\[= f(r^*(q(y) \cdot (m + 1), y), \overrightarrow{x}^n) \]

4.4 General Recursion

Next: 4.5 String Operations **Up: 4. Primitive Recursive Functions** **Previous: 4.3 Primitive Recursive Expressibility (Revisited)**

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document *provided* that each such copy (or portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is *prohibited*.
4.5 String Operations

Fix an alphabet $\sum^*_k = \{1, \ldots, k\}$. We adopt the convention of using u, v, and w to denote strings over \sum^*_k. We define the following elementary string functions:

Suppose $w = a_n \cdots a_1 a_0 \in \sum^*_k$, then

$$\text{end}_k(w) = a_0$$
$$\text{rsf}_k(w) = a_n \cdots a_1$$

Proposition 4.10 The functions end_k and rsf_k are primitive recursive in the sense that $\nu_k \circ \text{end}_k \circ k_k$ and $\nu_k \circ \text{rsf}_k \circ k_k$ are primitive recursive.

Proof: The functions are defined as follows:

$$\text{rsf}_k(x) = (x - 1)/k$$
$$\text{end}_k(x) = x - (\text{rsf}_k(x) \times k)$$

To see that these are correct, observe that if $w = k_k(x) = a_n \cdots a_1 a_0$, then $x - 1 = a_n \times k^n + \cdots + a_1 \times k + (a_0 - 1)$, where $0 \leq a_0 - 1 < k$, so that $\text{rsf}_k(x) = a_n \times k^{n-1} + \cdots + a_2 \times k + a_1$ as required. Given the correctness of rsf_k, the correctness of end_k is immediate.
Proposition 4.11 The string functions \(| w |_k\) and \(u \cdot v\) (i.e., length and concatenation) are primitive recursive.

Proof: String length over \(\Sigma^*_k\) is defined by
\[
| x |_k = \min y \leq x [rsf^*_k(x, y) = 0],
\]
where \(rsf^*_k\) is defined by
\[
rsf^*_k(x, 0) = x
\]
\[
rsf^*_k(x, y + 1) = rsf_k(rsf^*_k(x, y)).
\]

and concatenation over \(\Sigma^*_k\) is defined by
\[
x \cdot y = x \times k | y |_k + y.
\]

Proposition 4.12 The following string predicates and functions are primitive recursive.

\(occ_k(u, w)\) \(\equiv\) the string \(u\) occurs in the string \(w\).

\(pre_k(u, w)\) = the prefix of the first occurrence of \(u\) in \(w\).

\(suf_k(u, w)\) = the suffix of the first occurrence of \(u\) in \(w\).

\(rep_k(u, v, w)\) = the result of replacing the first occurrence of \(u\) in \(w\) by \(v\).

For \(pre_k\) and \(suf_k\) we require that if \(u\) does not occur in \(w\), then the value of the function is \(w + 1\).

Proof:
4.5 String Operations

\[
\text{occ}_k(x, z) \equiv \exists y_1 \leq z \exists y_2 \leq z [z = y_1 \cdot x \cdot y_2].
\]

\[
\text{pre}_k(x, z) = \min_y y_1 \leq z \exists y_2 \leq z [z = y_1 \cdot x \cdot y_2].
\]

\[
\text{suf}_k(x, z) = \min_y y_2 \leq z [z = \text{pre}_k(x, z) \cdot x \cdot y_2].
\]

\[
\text{rep}_k(x, y, z) = \text{pre}_k(x, z) \cdot y \cdot \text{suf}_k(x, z).
\]

Corollary 4.13 If \(g\) and \(h_a\) for each \(a \in \Sigma_k\) are (primitive / partial) recursive functions, then so is the function \(f\) defined by

\[
f(\varepsilon, \vec{x}^n) = g(\vec{x}^n)
\]

\[
f(y \cdot a, \vec{x}^n) = h_a(y, f(y, \vec{x}^n), \vec{x}^n), \quad \text{for each} \quad a \in \Sigma_k
\]

Proof: Define the (primitive / partial) recursive function \(H\) by

\[
H(y, z, \vec{x}^n) = \begin{cases}
 h_1(rsf_k(y), z, \vec{x}^n), & \text{if } end_k(y) = 1 \\
 \cdot & \text{.} \\
 \cdot & \text{.} \\
 h_k(rsf_k(y), z, \vec{x}^n), & \text{if } end_k(y) = k
\end{cases}
\]

Then
\[
f(y \cdot a, \vec{x}^n) = h_d(y, f(y, \vec{x}^n), \vec{x}^n)
\]
\[
= H(y \cdot a, f(rsf_k(y \cdot a), \vec{x}^n), \vec{x}^n)
\]

so that \(f \) is defined by recursion from \(g \), \(H \), and \(rsf_k \). But, clearly \(rsf_k(x) < x \) for all \(x > 0 \), so that the result follows from Proposition 4.9.

Exercise 4.1 Show that if \(g \) is a primitive recursive function and \(P \) is a primitive recursive predicate, then the following are also primitive recursive functions and predicates.

\[
\min y \leq g(x) \ [P(y, \vec{x}^n)]
\]
\[
\max y \leq g(x) \ [P(y, \vec{x}^n)]
\]
\[
\forall y \leq g(x) \ [P(y, \vec{x}^n)]
\]
\[
\exists y \leq g(x) \ [P(y, \vec{x}^n)]
\]

Exercise 4.2 Show that the following are primitive recursive:

\[
x \leq y
\]
\[
x = y
\]
\[
x \neq y
\]
\[
x^y
\]
4.6 Coding of Tuples

As an application of the above we show how to code n-tuples of integers in a primitive recursive fashion. We simply view x_1, \ldots, x_n as a string over Σ_{k+1} consisting of n strings over Σ_k separated by the symbol ``," (which is the $k+1$st symbol of Σ_{k+1} and as such does not belong to Σ_k). Thus, the function of n arguments which produces this string, which we denote by $\langle x_1, \ldots, x_n \rangle_n$, is primitive recursive via

$$\langle x_1, \ldots, x_n \rangle_n = x_1 \cdot \ldots \cdot x_n.$$

Note that $\langle x_1, \ldots, x_n \rangle_n$ is simply some primitive recursive function of n arguments which we could have denoted by $f_n (\langle \rangle) (x_1, \ldots, x_n)$. Next the projection functions Π^n_j for each $1 \leq j \leq n$ are defined by

$$\Pi^n_j (x) = x_j, \quad \text{where} \quad x = \langle x_1, \ldots, x_n \rangle_n.$$

In order to see that Π^n_j is primitive recursive, we must first define some useful primitive recursive functions. We use `,' (instead of $k+1$) when we wish to refer to the special separation symbol ``,".

- The function $noc_k(j, x)$, which gives the number of occurrences of the symbol j in the string x over Σ_k.

$$noc_k(j, \epsilon) = 0$$
4.6 Coding of Tuples

\[noc_k(j, x \cdot a) = \begin{cases}
0, & \text{if } j > k \\
noc_k(j, x), & \text{if } a \neq j \\
noc_k(j, x) + 1, & \text{if } a = j.
\end{cases} \]

- Then, the predicate \(\text{tup}(n, x) \), which specifies whether or not \(x \) codes an \(n \)-tuple, is given by

\[\text{tup}(n, x) \equiv noc_{k+1}(\', x) = n - 1 \]

- Next, we define the function \(\text{prt}_k(j, x, n) \), which gives the part in the string \(x \) over \(\Sigma_k \) between the \(n \text{th} \) and the \(n+1 \text{st} \) occurrence of the symbol \(j \),

\[\text{prt}_k(j, x, n) = \begin{cases}
\max z \leq x \ \exists y_1 \leq x \ \exists y_2 \leq x [x = y_1 \cdot z \cdot y_2 \\
\land noc_k(j, y_1) = n \land \neg occ_k(j, z)], & \text{if } noc_k(j, x) \geq n \\
x + 1, & \text{otherwise}.
\end{cases} \]

Observe, that if \(x \) has \(n \) occurrences of \(j \), then \(\text{prt}_k(j, x, n) \) gives the part of \(x \) between the \(n \text{th} \) occurrence of \(j \) in \(x \) and the end of \(x \).

- Next, we define the primitive recursive uniform projection function as follows:

\[\Pi(n, j, x) = \begin{cases}
\text{prt}_{k+1}(\', x, j-1), & \text{if } \text{tup}(n, x) \land 1 \leq j \leq n \\
x + 1, & \text{otherwise}.
\end{cases} \]
Finally, the projections \prod^n_j are defined by

$$\prod^n_j(x) = \prod(n, j, x).$$

Thus $\langle \cdot \rangle_n$ together with \prod^1_n, ..., \prod^n_n establish a one-to-one correspondence between all n-tuples of natural numbers and all strings over \sum^*_{k+1} with $n-1$ occurrences of ` `, `. Furthermore, the uniform projection function \prod allows for the decoding of every natural number as a unique tuple of natural numbers.

As another application of coding we at last show that it is possible to define several functions simultaneously by induction.

Proposition 4.14 Let $g_1, ..., g_m$ and $h_1, ..., h_m$ be (primitive / partial) recursive functions. Then the functions $f_1, ..., f_m$ defined by

$$f_i(0, \overrightarrow{x}^n) = g_i(\overrightarrow{x}^n)$$

$$f_i(y + 1, \overrightarrow{x}^n) = h_i(y, f_1(y, \overrightarrow{x}^n), ..., f_m(y, \overrightarrow{x}^n), \overrightarrow{x}^n)$$

for each $1 \leq i \leq m$, are also (primitive / partial) recursive.

Proof: Define G and H by

$$G(\overrightarrow{x}^n) = \langle g_1(\overrightarrow{x}^n), ..., g_m(\overrightarrow{x}^n) \rangle_m$$

$$H(y, z, \overrightarrow{x}^n) = \langle h_1(y, \prod^m_1(z), ..., \prod^m_m(z), \overrightarrow{x}^n), ..., h_m(y, \prod^m_1(z), ..., \prod^m_m(z), \overrightarrow{x}^n) \rangle_m$$
and then the function F by

\[F(0, \overrightarrow{x}^n) = G(\overrightarrow{x}^n) \]

\[F(y + 1, \overrightarrow{x}^n) = H(y, F(y, \overrightarrow{x}^n), \overrightarrow{x}^n) \]

Clearly, G, H and hence F are (primitive / partial) recursive. We first show by induction that

\[F(y, \overrightarrow{x}^n) = \langle f_1(y, \overrightarrow{x}^n), \ldots, f_m(y, \overrightarrow{x}^n) \rangle_m. \]

Induction basis:

\[F(0, \overrightarrow{x}^n) = G(\overrightarrow{x}^n) = \langle g_1(\overrightarrow{x}^n), \ldots, g_m(\overrightarrow{x}^n) \rangle_m = \langle f_1(0, \overrightarrow{x}^n), \ldots, f_m(0, \overrightarrow{x}^n) \rangle_m \]

Induction step:

Assume that $F(y, \overrightarrow{x}^n) = \langle f_1(y, \overrightarrow{x}^n), \ldots, f_m(y, \overrightarrow{x}^n) \rangle_m$. Then,

\[F(y + 1, \overrightarrow{x}^n) = H(y, F(y, \overrightarrow{x}^n), \overrightarrow{x}^n) = H(y, \langle f_1(y, \overrightarrow{x}^n), \ldots, f_m(y, \overrightarrow{x}^n) \rangle_m, \overrightarrow{x}^n) \]
4.6 Coding of Tuples

\[h_1(y, f_1(y, \vec{x}^n), ..., f_m(y, \vec{x}^n), \vec{x}^n), ..., h_m(y, f_1(y, \vec{x}^n), ..., f_m(y, \vec{x}^n), \vec{x}^n) \, \}_m \]

Therefore, we see that \(f_i(y, \vec{x}^n) = \prod^n_i (F(y, \vec{x}^n)) \), and so \(f_1, ..., f_m \) are each (primitive / partial) recursive.

- We now see in retrospect that in the proof of Theorem 4.6 the definition of the functions \(g_Q^j \) are legitimate primitive recursive definitions.
- We can now see that it suffices to consider only (primitive / partial) recursive functions of one variable. Suppose \(f \) is a (primitive / partial) recursive function of \(n \) variables and let \(f^1 \) be the (primitive / partial) recursive function defined by \(f^1(x) = f(\prod^n_1 (x), ..., \prod^n_n (x)) \). Then, for any input \(x_1, ..., x_n \in \mathbb{N}^n \) to \(f \), we see that

\[f(x_1, ..., x_n) = f^1(\langle x_1, ..., x_n \rangle_n). \]

Therefore, every (primitive / partial) recursive function of \(n \) variables can be replaced by a (primitive / partial) recursive function of one variable whose input is \(\langle x_1, ..., x_n \rangle_n \) instead of \(x_1, ..., x_n \). Furthermore, we can easily implement (primitive / partial) recursive functions with outputs by ``interpreting" outputs as tuples.
Observe that there clearly are *LOOP* programs which compute non-total functions:

```
INPUT(X_1)
UNTIL Y_1 TRUE DO
ENDUNTIL
OUTPUT(Y_1)
```

Thus, because of the foregoing we must add some operation which can transform total functions into non-total functions to our set of primitive recursive functions in order to capture all the functions computed by *LOOP* programs. In fact, we now give an argument which shows that all models of computability must include some non-total functions.

Proverb 5.1 To define something (e.g., a function) which does **not** have a specified property, make it **different** from all those things (i.e., functions) which **do** have that property.

Arguments that use this proverb are called *diagonalization* arguments.

Example 5.1 There exist uncountably many total functions from \(\mathbb{N} \) to \(\mathbb{N} \).

Proof: Let \(f_0, f_1, \ldots \) be some list of the countably many functions from \(\mathbb{N} \) to \(\mathbb{N} \). Consider the following tableau:

<table>
<thead>
<tr>
<th>Table 5.1: Diagonalization Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0(0))</td>
</tr>
<tr>
<td>(f_1(0))</td>
</tr>
<tr>
<td>(f_2(0))</td>
</tr>
</tbody>
</table>
Then the function \(f^0(n) = f_n(n) + 1 \) is clearly different from each function on the list. Moreover, since each function on the list is total, so is \(f^0 \).

Many arguments by contradiction are in fact diagonalization arguments in disguise.

Example 5.2 The cardinality of the power set \(2^X \) of any set \(X \) is greater than the cardinality of \(X \) itself.

Proof: We denote the cardinality of a set \(Y \) by \(\#Y \). Clearly, \(\#X \leq \#2^X \), since we can define a function \(h : X \rightarrow 2^X \) by \(h(x) = \{x\} \). Now suppose \(g : X \rightarrow 2^X \) is any function. We show that \(g \) cannot be onto (so \(2^X \) must have more elements than \(X \)). Define

\[X^d = \{ x \in X : x \notin g(x) \}. \]

If \(g \) is onto, then there is some element \(y \in X \) such that \(g(y) = X^d \). Consider the question whether \(y \in X^d \):

\[y \in X^d \implies y \notin g(y) \implies y \notin X^d \quad \text{contradiction!} \]

\[y \notin X^d \implies y \in g(y) \implies y \in X^d \quad \text{contradiction!} \]
Therefore, no \(g : X \rightarrow 2^X \) can be onto. We can also give an explicit diagonalization argument as follows: Let \(f_k = \chi_{g(k)} \), so

\[
f_k(x) = \begin{cases} 1, & \text{if } x \in g(k) \\ 0, & \text{if } x \notin g(k) \end{cases}
\]

Then, define

\[
f^0(x) = \begin{cases} 1, & \text{if } f_x(x) = 0 \\ 0, & \text{if } f_x(x) = 1 \end{cases}
\]

Then, \(f^0 \) is a total 0 - 1 valued function on \(X \), i.e., it is the characteristic function of some subset \(X^0 \) of \(X \).

But, \(X^0 \subseteq 2^X \) and \(X^0 \) is different from each set \(g(k) \), so \(g \) cannot be onto. Observe!

\[
X^0 = \{ x : f^0(x) = 1 \} \\
= \{ x : f_x(x) = 0 \} \\
= \{ x : x \notin g(x) \} \\
= X^d
\]

- Under the assumption that the class of effectively computable functions should be countable and that programs for them should be effectively listable, we can show that the effectively computable functions \textit{must} contain some non-total functions, i.e., functions which are undefined for some inputs.

In the proof above that there are uncountably many total functions from \(\mathbb{N} \) to \(\mathbb{N} \) if we let \(f_n \) be the function computed by the \(n \)th program in the effective listing of programs for computable
functions, we see that if all f_n are total, then so is f°.

But, f° is also effectively computable (intuitively) since on input n we simply find the n^{th} program; run it on input n; and then add 1 to the result.

Thus the list cannot contain all the effectively computable functions, which contradicts our assumption. Thus, the list must contain some non-total function.

- This argument also shows that there cannot exist any effective listing of all and only the total computable functions.
6. Partial Recursive Functions

Notation 6.1 We use $\phi, \psi, \theta, \ldots$ to denote (possible) partial functions.

We use f, g, h, \ldots to denote total functions.

$\phi(x) \downarrow$ means that $\phi(x)$ is defined (convergent), i.e., $x \in \text{dom } \phi$.

$\phi(x) \uparrow$ means that $\phi(x)$ is undefined (divergent), i.e., $x \not\in \text{dom } \phi$.

$\phi = \psi$ means that for all x either both $\phi(x) \uparrow$ and $\psi(x) \uparrow$, or $\phi(x) \downarrow$ and $\psi(x) \downarrow$ and $\phi(x) = \psi(x)$.

Definition 6.2 The function $\phi : \mathbb{N}^n \rightarrow \mathbb{N}$ is obtained from the function $\psi : \mathbb{N}^{n+1} \rightarrow \mathbb{N}$ via minimization if for all $\vec{x}^n \in \mathbb{N}^n$

$$\phi(\vec{x}^n) = \begin{cases} m, & \text{where } m \text{ is the least number such that for all } 0 \leq k < m, \psi(k, \vec{x}^n) = 0 \text{ and } \psi(m, \vec{x}^n) \neq 0 \\ \uparrow, & \text{otherwise.} \end{cases}$$

$\phi(\vec{x}^n) = \min y[\psi(y, \vec{x}^n) \neq 0]$ denotes that ϕ is obtained from ψ via minimization.

- The intuitive basis for minimization is that of an unbounded search for the first y satisfying the property that $\psi(y, \vec{x}^n) \neq 0$. In this regard, since ψ may be a *non-total* function, we must be sure that $\psi(k, \vec{x}^n) \downarrow$ for all $0 \leq k < m$ before testing $\psi(m, \vec{x}^n)$.

Definition 6.3 A function is partial recursive if it can be obtained from the base functions (null, successor, projections) by finitely many applications of the operations of substitution, primitive recursion, and minimization.

- A partial recursive function which is total is called total recursive.
- A predicate P is a recursive predicate if χ_P is a total recursive function.

Theorem 6.1 Every partial recursive function is computed by a LOOP program.

Proof: We need only add to Theorem 4.5 an additional case in the induction step dealing with the operation of minimization.

Case 3:
Suppose

$$\phi(\vec{x}^n) = \min_y[\psi(y, \vec{x}^n) \neq 0]$$

and let P be a LOOP program for ψ and let $Y_1, ..., Y_n, Z_1, W_1$ be new program variables which do not occur in P. The program for ϕ is given by:

```
INPUT(Y_1, ..., Y_n)

w_1 ← P(Z_1, Y_1, ..., Y_n)

UNTIL W_1 TRUE DO
    Z_1 ← Z_1 + 1
    w_1 ← P(Z_1, Y_1, ..., Y_n)
ENDUNTIL
OUTPUT(Z_1)
```
Theorem 6.2 Every number-theoretic function computed by a *LOOP* program is partial recursive.

Proof: We need only add to the proof of Theorem 4.6 an additional case in the induction step dealing with UNTIL loops:

Case 3:

Suppose P is of the form

```
UNTIL $X_i$ TRUE DO

$Q$

ENDUNTIL
```

Let this be the tth loop (of any kind), and let Y_t be an imaginary program variable which will be used to count the number of times through the UNTIL loop, and let g_{Q^j} be the set of functions defined previously in the proof of Theorem 4.6. Define,

$$h(\vec{x}, \vec{y}) = \min_{y_t} [g_{Q^j}(\vec{x}, y_1, ..., y_t, ..., y_m) \neq 0].$$

Then,

$$f_P^j(\vec{x}, \vec{y}) = g_{Q^j}(\vec{x}, y_1, ..., h(\vec{x}, \vec{y}), ..., y_m).$$

Theorem 6.3 Fix some alphabet Σ_k. The class of number-theoretic functions computed by *LOOP* programs over Σ_k^* is identical to the class of partial recursive functions.
Observe, that there is an effective (i.e., computable) procedure which given a LOOP program over \(\Sigma_k^* \) constructs (an expression for) the partial recursive function which computes it. Conversely, there is also an effective procedure which given a partial recursive function constructs a LOOP program over \(\Sigma_k^* \) which computes it.

Observe also that for any LOOP program text, the partial recursive function which computes it is independent of the alphabet \(\Sigma_k^* \) which is used to specify its semantics.

Observe further, however, that the complexity of a LOOP program does depend on the alphabet \(\Sigma_k^* \), since it depends on the length of the internal and I/O representation used. Specifically, since for any \(k > 1, |k_k(x)| = \left\lfloor \log_k x \right\rfloor \), where \(\left\lfloor y \right\rfloor \) denotes the least integer \(\geq y \), but \(|k_1(x)| = x \), we see that between any two alphabets of more than one symbol, the respective complexity measures are related by a constant factor, whereas between \(\Sigma_1^* \) and any other alphabet consisting of more than one symbol the difference in complexity can be exponential.
7. Random Access Machines

A random access machine is an idealized computer with a random access memory consisting of a finite number of idealized registers (i.e., they can hold any sized number) R_1, R_2, \ldots whose contents are strings over some alphabet \sum, and which has a finite set of machine instructions. The set of machine instructions are as follows:

<table>
<thead>
<tr>
<th>Machine Instruction</th>
<th>Assembly</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/m/j;\text{ jmp}1 R{m/j}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td> jmp_{a}: if a is the leftmost symbol of R_m, then GoTo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{ line } j$ of the program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k/m/j;\text{ jmp}k R{m/j}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k + 1/m;\text{ suc}_1 R_m$</td>
<td></td>
<td></td>
</tr>
<tr>
<td> suc_{a}: concatenate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{ an } a$ to the right</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{ end of } R_m$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2k/m;\text{ suc}_k R_m$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$2k + 1/m;\text{ inp } R_m$</td>
<td></td>
<td>input a value into R_m</td>
</tr>
<tr>
<td>$2k + 2/m;\text{ out } R_m$</td>
<td></td>
<td>output a value from R_m</td>
</tr>
</tbody>
</table>
Definition 7.1 A RAM-program over \sum_k^* is a sequence of RAM statements $S_1, ..., S_n$ such that for some $1 < m < n$,

1. $S_1, ..., S_m$ are the only input statements
2. S_n is the only output statement
3. and no conditional jump statement in $S_{m+1}, ..., S_{n-1}$ can cause a jump to any line $\leq m$.

Definition 7.2 A RAM-program P over \sum_k^* computes the (partial) function $f: (\sum_k^n) \rightarrow \sum_k^*$ if and only if

1. there are n input statements of P;
2. for all $x_1, ..., x_n$, when P is executed with $x_1, ..., x_n$ as its input,
 (a) P halts if and only if $f(x_1, ..., x_n)$
 (b) if P halts, then P outputs $f(x_1, ..., x_n)$.

† Execution of a RAM program involves:

1. initially all registers have value 0
2. statements are executed according to the "obvious" semantics in the "obvious" order.

Proposition 7.1 Every function computed by a LOOP program is also computed by a RAM program.

Proof: (Left as an exercise)
7. Random Access Machines

7.1 Parsing RAM Programs
7.2 Simulation of RAM Programs
7.3 Index Theorem
7.4 Other Aspects
7.5 Complexity of RAM Programs
7.1 Parsing RAM Programs

Every RAM program over Σ_k is a string over the alphabet $\Sigma_k \cup \{/;\} \approx \Sigma_{k+2}$, i.e., the / and ; are the $k+1$st and $k+2$nd letters of Σ_{k+2}, respectively. We will use '/' and ';' to denote (the codes of) these special symbols. We now show that given any natural number, regarding it as a string over Σ_{k+2}, there is a primitive recursive function which ``parses'' that number.

- First suppose that x codes a RAM instruction (minus the `'';``). We define primitive recursive functions opc, reg, gto, which produce, respectively, the opcode part of x, the register named in x, and the goto part of x (if x codes a conditional jump instruction).

\[
\text{opc}(x) = \text{pre}_{k+2}(', x)
\]

\[
\text{reg}(x) = \begin{cases}
\text{suf}_{k+2}(', x), & \text{if } \text{noc}_{k+2}(', x) = 1 \\
\text{prt}_{k+2}(', x, 1), & \text{if } \text{noc}_{k+2}(', x) = 2 \\
0, & \text{otherwise}
\end{cases}
\]

\[
\text{gto}(x) = \begin{cases}
\text{prt}_{k+2}(', x, 2), & \text{if } \text{noc}_{k+2}(', x) = 2 \\
0, & \text{otherwise}
\end{cases}
\]

- Next, we define a primitive recursive predicate $\text{ins}(x)$ which determines whether x codes a legal instruction (minus the `'';``):
7.1 Parsing RAM Programs

\[\text{ins}(x) \equiv (\neg \text{occ}_k + 2(\text{'}, x)) \land (\text{opc}(x) \leq 2k + 3) \]

\[\land (\text{opc}(x) > 0) \land (\text{reg}(x) > 0) \]

\[\land (\text{opc}(x) \leq k \implies \text{noc}_k + 2(\text{'}, x) = 2) \]

\[\land (\text{opc}(x) > k \implies \text{noc}_k + 2(\text{'}, x) = 1) \]

- Suppose now that \(x \) codes a RAM program. We define primitive recursive functions \(\text{lng}(x) \) and \(\text{lne}(j, x) \) which give, respectively, the number of lines of \(x \) and the \(j \)th line (i.e., instruction) of \(x \):

\[\text{lng}(x) = \text{noc}_k + 2(\text{'}, x) \]

\[\text{lne}(j, x) = \text{prt}_k + 2(\text{'}, x, j - 1) \]

- Next, define primitive recursive programs \(\text{nrg}(x) \) and \(\text{mxr}(x) \) which give, respectively, the number of arguments of program \(x \) (i.e., the number of input statements), and the maximum number of any register used in \(x \).

\[\text{nrg}(x) = \text{min} \leq \text{lng}(x) \left[\forall j \leq m[j > 0 \implies \text{opc}(\text{lne}(j, x)) = 2k + 1] \right. \right. \]

\[\left. \left. \land \forall j \leq \text{lng}(x)[j > m \implies \text{opc}(\text{lne}(j, x)) \neq 2k + 1] \right] \right] \]

\[\text{mxr}(x) = \text{min} y \leq x \left[\forall j \leq \text{lng}(x)[j > 0 \implies \text{reg}(\text{lne}(j, x)) \leq y] \right] \]

- Then, we define the primitive recursive predicate \(\text{prg}(x) \) which specifies whether or not \(x \) codes a legal program:

\[\text{prg}(x) \equiv \forall j \leq \text{lng}(x)[j > 0 \implies \text{ins}(\text{lne}(j, x))] \land (\text{nrg}(x) > 0) \]

\[\land (\text{nrg}(x) < \text{lng}(x)) \land (\text{opc}(\text{lne}(\text{lng}(x), x) = 2k + 2) \]

\[\land \forall j \leq \text{lng}(x) - 1 [\text{opc}(\text{lne}(j, x)) \neq 2k + 2] \]
\[\forall j \leq \text{lng}(x)[j > 0 \land \text{opc}(\text{ln}(j, x)) \leq k \implies nrg(x) < \text{gto}(\text{ln}(j, x)) \leq \text{lng}(x)]\]
7.2 Simulation of RAM Programs

We now show how to simulate the execution of a RAM program (coded by) p over Σ^*_k on inputs (coded by) $y = \langle x_1, ..., x_n \rangle_n$. Thus, p is a string over Σ^*_{k+1} and y is a string over Σ^*_k. In order to do this we need at each step to record the "state" of the program execution, which will be given by the pair $\langle j, z \rangle_2$, where j is the current line number, and z codes the current values of the registers used by p (so z will be a $m_{x\!r}(p)$ tuple).

- First, we need to show that the primitive operations of RAM programs are primitve recursive. We define primitive recursive functions $val(p, z, j)$, $\text{lnd}(p, z, j)$, $\text{lsf}(p, z, j)$, $\text{suc}(a, p, z, j)$, and $\text{inp}(p, z, j, m)$, which give, respectively, the current value of register j, the leftmost symbol of register j, the result of deleting the leftmost symbol of register j, the result of adding the symbol a to the right end of register j, and the result of copying m into register j:

$$val(p, z, j) = \begin{cases} \prod(m_{x\!r}(p), j, z), & \text{if } 0 < j \leq m_{x\!r}(p) \text{ and } \text{tup}(m_{x\!r}(p), z) \\ 0, & \text{otherwise.} \end{cases}$$

$$\text{lnd}(p, z, j) = rsf_{k+1} \ast (val(p, z, j), \mid val(p, z, j) \mid_{k+1} - 1)$$

$$\text{inp}(p, z, j, m) = isg(p, z, j) \cdot \text{rep}_{k+1}(val(p, z, j), m, \text{suf}_{k+1}(isg(p, z, j), z))$$

$$\text{lsf}(p, z, j) = \text{inp}(p, z, j, \text{suf}_{k+1}(\text{lnd}(p, a, j), val(p, z, j)))$$

$$\text{suc}(a, p, z, j) = \text{inp}(p, z, j, val(p, z, j) \cdot a)$$

where $isg(p, z, j) = val(p, z, 1) \cdot '!' \cdot \ldots \cdot '!' \cdot val(p, z, j - 1) \cdot '!'$.

- We can now simulate the execution of RAM programs. We define two primitive recursive functions $\text{nxl}(p, y, z, j)$, which gives the next line of program p on input y to be executed given that the current register values are z and the current line is j; and $\text{nxv}(p, y, z, j)$, which gives the next values of the registers for program p on input y given that the current register values are z and the current line is j:
7.2 Simulation of RAM Programs

\[
nxl(p, y, z, j) = \begin{cases}
gto(lne(j, p)), & \text{if } \exists i \leq k \ [opc(lne(j, p)) = i \\
& \text{and } lnd(p, z, reg(lne(j, p)))) = i \\
j + 1, & \text{otherwise}
\end{cases}
\]

\[
nxv(p, y, z, j) = \begin{cases}
suc(a, p, z, reg(lne(j, p))))), & \text{if } opc(lne(j, p)) = k + a \\
lsf(p, z, reg(lne(j, p))))), & \text{if } opc(lne(j, p)) = 2k + 3 \\
inp(p, z, reg(lne(j, p)), \Pi(nrg(p), j, y)), & \text{if } opc(lne(j, p)) = 2k + 1 \\
z, & \text{otherwise}
\end{cases}
\]

- Now we define the primitive recursive function \(sim(p, y, m) \), which gives the pair \(\langle j, z \rangle \) which codes the current line and the current register values after \(m \) steps of the computation of \(p \) on input \(y \):

\[
sim(p, y, 0) = \langle 1, zro(mxr(p)) \rangle_2
\]

\[
sim(p, y, m + 1) = \langle \nxl(p, y, \Pi_2^1(sim(p, y, m)), \Pi_1^2(sim(p, y, m))), \\
\nxv(p, y, \Pi_2^2(sim(p, y, m)), \Pi_1^2(sim(p, y, m))) \rangle_2
\]

where \(zro(n) = \langle 0, \ldots, 0 \rangle_n \).

- Next, we define the partial recursive function \(stp(p, y) \), which gives the number of steps in the computation of \(p \) on input \(y \) if \(p \) halts on input \(y \):

\[
stp(p, y) = \min t \left[\Pi_1^2(sim(p, y, t)) = lng(p) \right]
\]
Now, we can define the "universal" partial recursive function $\phi_{unv}(p, y)$, which gives the result, if any, of the computation of p on input y:

$$
\phi_{unv}(p, y) = \begin{cases}
\Pi(mxt(p), \text{reg}(\text{lne}(\text{lng}(p), p)), \Pi_2^2(\text{sim}(p, y, \text{stp}(p, y))))), & \text{if prg}(p) \\
\uparrow, & \text{otherwise.}
\end{cases}
$$

Note that if p does not code a legal program then $\phi_{unv}(p, y)$ is undefined for all y. We define an indexing or Gödel numbering $\{\phi_i\}$ of the RAM computable functions (of one argument) by letting ϕ_i denote the partial recursive function computed by the RAM program (with code) i. Observe that since every partial recursive function is computable by a LOOP program, and hence in turn by a RAM program, every partial recursive function is included in the list $\{\phi_i\}$. The promised effective translation of RAM programs into partial recursive functions is given by the following.

Theorem 7.2 For the indexing $\{\phi_i\}$ given above there is a "universal" partial recursive function ϕ_{unv} such that for all x and y, $\phi_{unv}(x, y) = \phi_x(y)$.

- This result is not specific to RAM programs and partial recursive functions. We could have just as well written a LOOP program which transforms partial recursive function definitions into RAM programs.
- Since every partial recursive function is computable by a RAM program, there exists a RAM program P_{unv} which computes the function ϕ_{unv}, i.e., a RAM program which interprets (i.e., an "interpreter" for) other RAM programs and simulates their execution.

- Observe that in the process of defining ϕ_{unv} only one application of (unbounded) minimization was used. Therefore, every partial recursive function can be computed by a LOOP program which uses only one UNTIL loop!

The equivalence of LOOP computable, RAM computable and the class of partial recursive functions gives empirical evidence for Church's Thesis, which states that the class of partial recursive functions yield a formalization of our intuitive notion of effectively computable function.
7.3 Index Theorem

Theorem 7.2 shows that we can effectively interpret RAM programs. We now show that we can also effectively transform them. In particular, we show

Theorem 7.3 For every \(m, n \in \mathbb{N} \), there is a primitive recursive function \(S_m^n \) such that for every RAM program \(p \) of \(m + n \) arguments, \(S_m^n(p, x_1, \ldots, x_m) \) is a RAM program of \(n \) arguments such that

\[
\phi_{S_m^n(p, x_1, \ldots, x_m)}(y_1, \ldots, y_n) = \phi_p(x_1, \ldots, x_m, y_1, \ldots, y_n)
\]

The intuitive meaning of Theorem 7.3 is that given any RAM program \(p \) of \(m + n \) arguments and any set of fixed values \(x_1, \ldots, x_m \) we can build these as constants into \(p \) and construct a program \(S_m^n(p, x_1, \ldots, x_n) \) of the remaining \(n \) arguments which behaves exactly like \(p \) with its first \(m \) arguments fixed to be \(x_1, \ldots, x_m \). This will allow us to build data into programs. We will suppose that \(x_1, \ldots, x_m \) and \(y_1, \ldots, y_n \) are coded as tuples and so will denote them by \(x \) and \(y \), respectively. Thus, we need to show that \(\phi_{S_m^n(p, x)}(y) = \phi_p(x, y) \).

We can imagine the structure of \(p \) consisting of \(m \) input statements (which will be replaced), followed by the remaining \(n \) input statements, followed by the remainder of \(p \).

Figure 7.1: Index Theorem Transformation
Proof: First, the primitive recursive function \(isg_{k+1}(p, z, j) \), mentioned previously, is defined by:

\[
isg_{k+1}(p, z, j) = \min y_1 \leq z \ \exists y_2 \leq z [z = y_1 \cdot y_2 \ \land \ noc_{k+1}('', y_1) = j]
\]

Exercise 7.1 Show that if \(g \) is a primitive recursive function of \(n + 1 \) arguments, then the function defined by

\[
f(x, y^n) = \bigcirc_{j=1}^{x} g(j, y^n) = g(1, y^n) \ldots g(x, y^n)
\]

is primitive recursive. Observe that \(f(0, y^n) \) should have the value 0.

One key part of the required transformation is to replace an input statement by a block of statements
which assign a specified fixed value \(z \) to the variable \(R_m \) of the assignment statement. More precisely, we need to replace the statement

\[
\text{inp} R_m
\]

by the block of statements

\[
\text{suc}_{a_1} R_m \\
\text{suc}_{a_2} R_m \\
\text{suc}_{a_n} R_m
\]

where the specified value \(z = a_1 \ldots a_n \). This replacement is effected by the primitive recursive function \(rcp(z, m) \), which is defined by

\[
rcp(z, m) = \sum_{j=1}^{\|z\|_e+1} (k + smb(z, j)) \cdot \div m \cdot \div
\]

where \(smb(z, j) \) is the primitive recursive function which gives the \(j \)th symbol (from the left) of the string \(z \).

Then, the block of such copy statements for the \(m \)-tuple \(x \) is given by

\[
cpb(p, m, x) = \sum_{j=1}^{m} rcp(\Pi (m, j, x), \text{reg(ln}e(j, p)))
\]

Next, we need to adjust the goto parts of the rest of the program in order to account for the change in the number of lines. The function \(adl(z, r, s) \) adjusts the goto part of the instruction coded by \(z \) by \(+ r \) if \(r > 0 \), and by \(- s \) if \(r = 0 \), and is defined by

\[
\]
7.3 Index Theorem

\[adl(z, r, s) = \begin{cases}
 opc(z) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (gto(z) + r), & \text{if } opc(z) \leq k \text{ and } r > 0 \\
 opc(z) \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (gto(z) - s), & \text{if } opc(z) \leq k \text{ and } r = 0 \\
 z, & \text{otherwise.}
\end{cases} \]

and the result of adjusting all the lines of a program \(p \) is given by

\[adp(p, r, s) = \bigcup_{j=1}^{\text{ln}(p)} adl(lne(j, p), r, s) \cdot \cdot ;' \]

Finally, we can express the definition of the transformation \(S_m^n \) by

\[S_m^n(p, x) = suf_k + 2(\text{isg}_k + 2(p, m, ;'), \text{isg}_k + 2(p, m + n, ;')) \]
\[\cdot cpb(p, m, x) \]
\[\cdot adp(suf_k + 2(\text{isg}_k + 2(p, m + n, ;'), p), |x|_{k+2} + 1 - (2 \times m), \]
\[(2 \times m) \cdot 1 \cdot |x|_{k+2}) \]

The number \(|x|_{k+2} + 1 - (2 \times m) \) arises from the fact that the net increase in length due to the copy block is equal to the length of \(x \) minus the \(m \) lines which are replaced. Observe, that it is possible for this number to be negative (e.g., when each element of the \(m \)-tuple \(x \) is a 0).
7.4 Other Aspects

- We can construct non-deterministic RAM programs by adding instructions of the form
 \[2k + 4j_1/j_2; \text{njp } j_1 \text{ or } j_2 \]
 which non-deterministically selects one of two lines \((j_1 \text{ or } j_2)\) to jump to.

- We can construct probabilistic RAM programs by adding instructions of the form
 \[2k + 5j_1/j_2; \text{pj}p j_1 \text{ or } j_2 \]
 which selects with probability \(\frac{1}{2}\) one of two lines \((j_1 \text{ or } j_2)\) to jump to.

We distinguish between deterministic, non-deterministic, and probabilistic RAM programs by using the notation \(DRAM, NRAM,\) and \(PRAM\), respectively.
7.5 Complexity of RAM Programs

Definition 7.3 If P is a deterministic RAM program (a DRAM program) over Σ^* with n inputs and which uses only registers $R_1, ..., R_r$, then we define the following complexity measures for P.

$$DRMtime_p(x^n) = \begin{cases} \sum_{i=1}^{n} \mid x_i \mid + \# \text{ of stmts of } P \text{ executed on input } x^n, \\ \downarrow, \text{ otherwise.} \end{cases}$$

$$DRMspace_p(x^n) = \begin{cases} \max \sum_{i=1}^{r} \mid R_i^t \mid, \forall t \leq DRMtime_p(x^n), \text{ if } P \text{ halts,} \\ \downarrow, \text{ otherwise.} \end{cases}$$

where R_i^t denotes the contents of register R_i at step t of the computation of P on input x^n.

Proposition 7.4 The following predicates are primitive recursive:

$$Q_{DRMtime}(p, x^n, y) \equiv [DRMtime_p(x^n) \leq y]$$

$$Q_{DRMspace}(p, x^n, y) \equiv [DRMspace_p(x^n) \leq y]$$

Proof: For time complexity, we have
For space complexity, observe that given a fixed amount of space, it is possible for a computation to enter an infinite computation loop within that amount of space. In this case, since the space complexity is still undefined, the predicate Q_{DRMspace} must respond with False. Moreover, if the program is ever in the situation where it is about to execute an instruction with a current memory contents that is identical to an instruction and memory contents combination that it encountered earlier, then clearly it is in such an infinite loop. Thus, the number of distinct instruction-memory combinations is an upper bound on the number of steps a program can execute in an a priori given amount of space before it is certain to be in an infinite loop. Given this analysis we now define

$$Q_{\text{DRMspace}}(p, \vec{x}^n, y) \equiv \exists z \leq (y - \sum_{i=1}^{n} |x_i|_k) [\prod_1^2(sim(p, \langle \vec{x}^n \rangle_n, z)) = \ln(g(p))]$$

where the term $1 - mrx(p)$ is (minus) the number of commas in the internal representation of the contents of the registers of p.

Proposition 7.5 For each DRAM program p there exist constants c_1, c_2 such that

$$\text{DRMtime}_p(\vec{x}^n) \leq c_1 c_2 \times \text{DRMspace}_p(\vec{x}^n)$$

$$\text{DRMspace}_p(\vec{x}^n) \leq \text{DRMtime}_p(\vec{x}^n)$$

Proof: The first inequality follows from the analysis given preceding the primitive recursive definition of Q_{DRMspace} in Proposition 7.4. The second inequality follows since the only RAM instructions which can
increase the space beyond that occupied by the input is the suc_a instruction, which can only increase it by one symbol.

Proposition 7.6 Let p be any $DLOOP$ program over Σ_k^*, and let p' be the equivalent $DRAM$ program over Σ_k^* constructed in Proposition 7.1. There exist constants c_1, c_2, and c_3 such that

\[
DRMtime_p(\overrightarrow{x}^n) \leq c_1 \times (DLPtime_p(\overrightarrow{x}^n))^{c_2}
\]

\[
DRMspace_p(\overrightarrow{x}^n) \leq c_3 \times DLPspace_p(\overrightarrow{x}^n)
\]
8. Acceptable Programming Systems

We now wish to examine the properties of computable functions without getting bogged down with the details of any of the particular models which we have heretofore studied. Therefore, we generalize our notion of (standard) model of computable function.

Definition 8.1 A programming system is a listing \(\phi_0, \phi_1, \ldots \) (denoted by \(\{ \phi_i \} \)) which includes all of the partial recursive functions (of one variable) over \(\mathbb{N} \). A acceptable programming system is a programming system \(\{ \phi_i \} \) for which

1. there exists a universal program \(\text{unv} \) such that \(\phi_{\text{unv}}(i, x) = \phi_i(x) \) for all \(i \) and \(x \); and
2. there is a total recursive S-m-n function \(S_{m,n} \) such that \(\phi_{S_{m,n}(i,x)}(y) = \phi_i(x, y) \) for all \(i, m \)-tuples \(x \), and \(n \)-tuples \(y \).

We will abbreviate \(S_{m,n} \) by \(S \) whenever it is clear how many arguments it takes.

Theorem 8.1 Let \(\{ \phi_i \} \) be any acceptable programming system, and let \(\{ \psi_i \} \) be any programming system. Then, \(\{ \psi_i \} \) is acceptable if and only if there exist total recursive functions \(f \) and \(g \) such that for all \(i \), \(\phi_f(i) = \psi_i \) and \(\psi_g(i) = \phi_i \).

Proof: Since \(\{ \phi_i \} \) is acceptable, there exist partial recursive \(\phi_{\text{unv}} \) and total recursive \(S \) such that

\[
\phi_{\text{unv}}(i, x) = \phi_i(x)
\]
8. Acceptable Programming Systems

\(\phi_{S(i,x)}(y) = \phi_i(x, y). \)

Case (\(\implies \)):

Since \{\(\psi_i \)\} is also acceptable, there exist partial recursive \(\psi_{unv} \) and total recursive \(S' \) such that

\[
\psi_{unv}(i, x) = \psi_i(x) \\
\psi_{S'(i,x)}(y) = \psi_i(x, y).
\]

Now, since \{\(\phi_i \)\} is a listing of all partial recursive functions, there is an index (i.e., program code) \(e \) such that \(\phi_e = \psi_{unv} \). Then, we define

\[f(i) = S(e, i) \]

so that

\[\psi_i(x) = \psi_{unv}(i, x) = \phi_e(i, x) = \phi_{S(e,i)}(x) = \phi_{f(i)}(x). \]

Similarly, there exists an index \(e' \) such that \(\psi_{e'} = \phi_{unv} \), and we define \(g(i) = S'(e', i) \) so that \(\phi_i(x) = \psi_{g(i)}(x). \)

Case (\(\Longleftarrow \)):

Suppose \(f \) and \(g \) are total recursive functions such that

\[\phi_{f(i)} = \psi_i \quad \text{and} \quad \psi_{g(i)} = \phi_i. \]
Then, we can define the universal function for \(\psi_i \) by

\[
\psi_{\text{univ}}(i, x) = \phi_{\text{univ}}(f(i), x) = \phi_f(i)(x) = \psi_i(x).
\]

Finally, we define the function \(S' \) for \(\psi_i \) by

\[
S'(i, x) = g(S(f(i), x))
\]

so that

\[
\psi_{S'}(i, x)(y) = \psi_{g(S(f(i), x))}(y) = \phi_{S(f(i), x)}(y) = \phi_f(i)(x, y) = \psi_i(x, y).
\]

Definition 8.2 A *program transformation* is any total recursive function whose domain and range are programs (i.e., indices) for partial recursive functions.

Observe that this definition is vacuous in the sense that every number can be interpreted as a program. However, it is useful for its intensional aspect.
8.1 General Computational Complexity

One of the most important behavioral aspects of a computation is the complexity of the computation, i.e., the amount of computation resources used during that computation. It will play a key role in many of the proofs which follow, so we now define a general notion of computational complexity which is suitable for our generalized model of computability.

Definition 8.3 Let \{ \phi_i \} be any acceptable programming system. A listing of partial functions \{ \Phi_i \} is a computational complexity measure for \{ \phi_i \} if it satisfies:

1. \(\text{dom } \phi_i = \text{dom } \Phi_i \), i.e., for all \(i, x \), \(\phi_i(x) \downarrow \iff \Phi_i(x) \downarrow \);

2. \(\Phi_i(x) \leq y \) is a recursive predicate in \(i, x, \) and \(y \).

Clearly, the complexity measures defined for LOOP and RAM programs satisfy the first condition of a general computational complexity measure. It is also clear from Proposition 7.4 (and its analog for LOOP programs) that the second condition is satisfied by these complexity measures as well.

Proposition 8.2 If \{ \Phi_i \} is a computational complexity measure for \{ \phi_i \}, then \(\Phi_i \) is a partial recursive function for each \(i \).

Proof:

\(\Phi_i(x) = \min y[\Phi_i(x) \leq y] \).
Proposition 8.3 There is a program transformation \mathcal{T} such that $\phi_{\mathcal{T}(i)} = \Phi_i$.

Proof: Define

$$h(i, x) = \min y \left[\Phi_i(x) \leq y \right]$$

$$= \Phi_i(x)$$

Let e be a program for h, i.e., $\phi_e(i, x) = h(i, x)$, then by the S-m-n function which exists for $\{\Phi_i\}$,

$$\phi_{S(e, i)}(x) = \phi_e(i, x) = h(i, x) = \Phi_i(x)$$

Therefore, we define $\mathcal{T}(i) = S(e, i)$, so that $\phi_{\mathcal{T}(i)} = \Phi_i$.

Nearly all program transformations which we will encounter will be defined in this way using the S-m-n function.

Theorem 8.4 (Recursive Relatedness of Complexity Measures) Let $\{\phi_i\}$ and $\{\psi_i\}$ be acceptable programming systems, and let g be a total recursive function such that $\phi_i = \psi_g(i)$ for all i. Let $\{\Phi_i\}$ and $\{\Psi_i\}$ be computational complexity measures for $\{\phi_i\}$ and $\{\psi_i\}$, respectively. Then, there exists a total recursive function r such that for all i and for all $x \geq i$,

$$\Phi_i(x) \leq r(x, \psi_g(i)(x)) \quad \text{and} \quad \Psi_{g(i)}(x) \leq r(x, \Phi_i(x))$$
8.1 General Computational Complexity

Proof: Define the total recursive function r as follows:

$$r(x, z) = \max_{j \leq x} \{ \Phi_j(x), \Psi_{g(j)}(x) : \Phi_j(x) \leq z \text{ or } \Psi_{g(j)}(x) \leq z \}$$

Then, for all $x \geq i$,

$$r(x, \Psi_{g(i)}(x)) = \max_{j \leq x} \{ \Phi_j(x), \Psi_{g(j)}(x) : \Phi_j(x) \leq \Psi_{g(i)}(x)$$

or \(\Psi_{g(j)}(x) \leq \Psi_{g(i)}(x) \}\n
$$\geq \max \{ \Phi_i(x), \Psi_{g(i)}(x) \}$$

$$\geq \Phi_i(x)$$

Similarly, $r(x, \Phi_i(x)) \geq \Psi_{g(i)}(x)$, for all $x \geq i$.

We fix some arbitrary acceptable programming system \{\(\Phi_i\}\} and computational complexity measure \{\(\Phi_i\}\} for it which we will use from now on.

Proposition 8.5 There is a program transformation g such that for all x, $\text{ran } \phi_x = \text{dom } \phi_{g(x)}$.

Proof: Define the partial recursive function ψ by,

$$\psi(x, y) = \min z[\Phi_x(\Pi^2_1(z)) \leq \Pi^2_2(z) \text{ and } \phi_x(\Pi^1_1(z)) = y]$$
First, observe the \(\psi \) is indeed partial recursive, since we can write \(\phi_{\text{unv}}(\tau(x), y) \) for \(\phi_x(y) \) (where \(\tau \) is the program transformation of Proposition 8.3), and \(\phi_{\text{unv}}(x, y) \) for \(\phi_x(y) \). Next we have

\[
\psi(x, y) \Downarrow \iff \exists \langle z_1, z_2 \rangle_2 \left[\Phi_x(z_1) \leq z_2 \text{ and } \phi_x(z_1) = y \right]
\]

\[
\iff y \in \text{ran } \phi_x
\]

Let \(i \) be a program for \(\psi \), so \(\phi_i = \psi \), and define \(g(x) = S(i, x) \), so that \(\phi_{g(x)}(y) = \psi(x, y) \). Then,

\[
y \in \text{dom } \phi_{g(x)} \iff \phi_{g(x)}(y) \Downarrow \iff y \in \text{ran } \phi_x.
\]

Therefore, \(\text{ran } \phi_x = \text{dom } \phi_{g(x)} \).

Proposition 8.6 There is a program transformation \(h \) such that for all \(x \), \(\text{ran } \phi_{h(x)} = \text{dom } \phi_x \).

Proof: Define the partial recursive function \(\psi \) by

\[
\psi(x, 0) = \Pi_1^2(\min z[\Phi_x(\Pi_1^2(z)) \leq \Pi_2^2(z)])
\]

\[
\psi(x, y + 1) = \begin{cases}
\psi(x, y), & \text{if } \Phi_x(\Pi_1^2(y + 1)) > \Pi_2^2(y + 1) \\
\Pi_1^2(y + 1), & \text{otherwise.}
\end{cases}
\]
8.1 General Computational Complexity

Let i be such that $\phi_i = \psi$, and define $h(x) = S(i, x)$, so that $\phi_{h(x)}(y) = \psi(x, y)$. We consider two cases:

Case 1:

$\text{dom } \phi_x = \emptyset$.

In this case, since $\text{dom } \Phi_x = \text{dom } \phi_x$, we see that $\psi(x, y) \uparrow$ for all y, so that $\text{ran } \phi_{h(x)} = \emptyset = \text{dom } \phi_x$.

Case 2:

$\text{dom } \phi_x \neq \emptyset$.

Observe first that since $\text{dom } \phi_x \neq \emptyset$, the function ψ must be total recursive. For each $y \in \text{dom } \phi_x$, clearly $\psi(x, \langle y, \Phi_x(y) \rangle_2) = y$, so that $\text{dom } \phi_x \subseteq \text{ran } \phi_{h(x)}$. On the other hand, if $\psi(x, y) = z \neq \psi(x, y - 1)$ (including the case $y = 0$), then we have that $\Phi_x(z) \leq \Pi_2^0(y)$, so that $\phi_x(z) \downarrow$ and $\text{ran } \phi_{h(x)} \subseteq \text{dom } \phi_x$.

Notation 8.4 For any predicate P, we write $\exists x P(x)$ (or $P(x) \text{ i.o.}$) if there exist infinitely many numbers x for which $P(x)$ is true. We also write $\forall x P(x)$ (or $P(x) \text{ a.e.}$) if for all but finitely many numbers x $P(x)$ is true. The expressions i.o. and a.e. are abbreviations for "infinitely often" and "almost everywhere", respectively.

Theorem 8.7 For any total recursive function t there exists a total recursive function f such that if $\phi_i = f$, then for all $x \geq i$, $\Phi_i(x) > t(x)$.

Proof: Proof is by diagonalization using Proverb 5.1. Define the total recursive function
8.1 General Computational Complexity

\[f(x) = \max \{ \phi_j(x) + 1 : j \leq x \text{ and } \Phi_j(x) \leq t(x) \}. \]

Thus, if \(\phi_i = f \) and \(x \geq i \), then \(\Phi_i(x) > t(x) \), since otherwise we would have

\[\phi_i(x) = f(x) = \max \{ \phi_j(x) + 1 : j \leq x \land \Phi_j(x) \leq t(x) \} \]

\[\geq \phi_i(x) + 1. \]

Thus, we see that there are functions which are functions which are a.e. difficult to compute with respect to any given complexity measure. We observe that we cannot improve this result to everywhere difficult to compute, since we can always "speed-up" the computation of any function on finitely many of its inputs by building in a table with the corresponding outputs and then computing the function on those inputs by table lookup.

Bob Daley
2001-11-28
©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.
8.2 Algorithmically Unsolvable Problems

Theorem 8.8 (Unsolvability of the Halting Problem) The function f such that for all x and y,

$$f(x, y) = \begin{cases}
1, & \text{if } \phi_x(y) \downarrow \\
0, & \text{if } \phi_x(y) \uparrow.
\end{cases}$$

is not recursive.

Proof: Define the total function $g(x) = f(x, x)$, and the partial function ψ by

$$\psi(x) = \begin{cases}
0, & \text{if } g(x) = 0 \\
\uparrow, & \text{if } g(x) = 1.
\end{cases}$$

If ψ is partial recursive, then there is a program i such that $\psi = \phi_i$, but then

$$\psi(i) = \phi_i(i) = 0 \iff g(i) = 0 \iff \phi_i(i) \uparrow,$$

which is a contradiction. Therefore, ψ cannot be partial recursive, so that g and hence f cannot be total recursive.
The following set \mathcal{H} (referred to as the "Halting Problem") plays an important role in undecidability results:

$$
\mathcal{H} = \{x : \phi_x(x) \downarrow \}.
$$

Corollary 8.9 The set \mathcal{H} (and its complement $\overline{\mathcal{H}}$) is not recursive.

We will be able to show that there are many such problems which are algorithmically unsolvable. One of the major techniques is to reduce one problem to another, i.e., to show that if one problem were solvable then the other would also be solvable.

Definition 8.5 Let $X, Y \subseteq \mathbb{N}$. We say that X is many-one reducible to Y (denoted by $X \leq_m Y$), if there is a total recursive function f such that for all $x, x \in X \iff f(x) \in Y$. We write $X \equiv_m Y$ whenever $X \leq_m Y$ and $Y \leq_m X$.

Proposition 8.10 If Y is a recursive set and $X \leq_m Y$, then X is also recursive.

Proof: Let f be a total recursive function such that $x \in X \iff f(x) \in Y$. Then, the characteristic function of X is given by $\chi_X = \chi_Y \circ f$, i.e.,

$$
\chi_X(x) = 1 \iff \chi_Y(f(x)) = 1.
$$

Proposition 8.11 The following sets are not recursive:

$$
\begin{align*}
\text{FIN} &= \{x : \text{dom } \phi_x \text{ is finite}\} \\
\text{TOT} &= \{x : \phi_x \text{ is total}\}
\end{align*}
$$
Proof: Define the partial recursive function \(\psi \) by

\[
\psi(x, y) = \phi_{uuv}(x, x) \div \phi_{uuv}(x, x).
\]

Then,

\[
\psi(x, y) = \begin{cases}
0, & \text{if } \phi_x(x) \downarrow \text{ (i.e., } x \in \mathbb{H}) \\
\uparrow, & \text{if } \phi_x(x) \uparrow \text{ (i.e., } x \not\in \mathbb{H})
\end{cases}
\]

Let \(i \) be such that \(\phi_i = \psi \) and define the total recursive function \(f \) by \(f(x) = S(i, x) \), so that \(\phi_{f(x)}(y) = \psi(x, y) \). Let \(\omega \) be the everywhere undefined partial recursive function. Clearly,

\[
\phi_{f(x)} = \begin{cases}
N, & \text{if } x \in \mathbb{H} \\
\omega, & \text{if } x \not\in \mathbb{H}
\end{cases}
\]

Therefore, \(x \in \mathbb{H} \iff f(x) \in \text{TOT} \), hence \(\mathbb{H} \leq_m \text{TOT} \). By Proposition 8.10 if \(\text{TOT} \) were a recursive set, then so would \(\mathbb{H} \) be recursive, contradicting Corollary 8.9. Similarly, \(x \not\in \mathbb{H} \iff f(x) \in \text{FIN} \), and \(\mathbb{H} \leq_m \text{FIN} \), so if \(\text{FIN} \) were recursive so would \(\overline{\mathbb{H}} \) be, again a contradiction.

Definition 8.6 For any class \(C \) of partial recursive functions, we define the set of programs \(P_C \) (called an *index set*) for these functions by

\[P_C = \{ x : \phi_x \in C \}. \]

Theorem 8.12 (Rice's Theorem) \(P_C \) is recursive if and only if either \(P_C = \emptyset \) or \(P_C = \mathbb{N} \).

Proof: Clearly, \(\emptyset \) and \(\mathbb{N} \) are recursive sets. So, suppose that \(P_C \neq \emptyset \) and \(P_C \neq \mathbb{N} \). Let \(\omega \) be the everywhere undefined partial recursive function, and assume without loss of generality that \(\omega \in C \). Since \(P_C \neq \mathbb{N} \), there is some partial recursive function \(\psi \) such that \(\psi \not\in C \). Let \(i \) be such that \(\phi_i = \psi \), and define the partial recursive function

\[\theta(x, y) = \phi_{\text{univ}}(i, y) + (\phi_{\text{univ}}(x, x) - \phi_{\text{univ}}(x, x)). \]

Then,

\[\theta(x, y) = \begin{cases}
\psi(y), & \text{if } x \in \mathbb{N} \\
\uparrow, & \text{if } x \not\in \mathbb{N}.
\end{cases} \]

Let \(j \) be such that \(\phi_j = \theta \), and define the program transformation \(f \) by \(f(x) = S(j, x) \), so that \(\phi_{f(x)}(y) = \theta(x, y) \). Then,

\[\phi_{f(x)} = \begin{cases}
\psi, & \text{if } x \in \mathbb{N} \\
\omega, & \text{if } x \not\in \mathbb{N}.
\end{cases} \]
Therefore, $x \in \overline{\mathbb{H}} \iff f(x) \in \mathbb{P}_C$, so that $\overline{\mathbb{H}} \leq_m \mathbb{P}_C$, and so \mathbb{P}_C cannot be recursive.

Rice's Theorem says in essence that there are no non-trivial aspects of the behavior of a program which are algorithmically determinable given only the text of the program. By trivial we mean that either no programs have that behavior or all programs have that behavior. As such, Rice's Theorem represents an extremely severe limitation on the power of algorithms.
9. Recursively Enumerable Sets

Definition 9.1 A set X is recursively enumerable (or r.e.) if and only if $X = \text{ran} \phi$, for some partial recursive function ϕ.

By Propositions 8.5 and 8.6 we have

Corollary 9.1 A set X is recursively enumerable if and only if $X = \text{dom} \phi$, for some partial recursive function ϕ.

Corollary 9.2 A set X is recursively enumerable if and only if either $X = \emptyset$ or $X = \text{ran} f$ for some total recursive function f.

Thus, we see that the class of sets generated by partial recursive functions is identical to the class of sets accepted by partial recursive functions.

Proposition 9.3 A set is recursive if and only if both it and its complement are recursively enumerable.

Proof: Since \emptyset is clearly recursive and r.e., it suffices to consider only non-empty sets.

(\Rightarrow):
Since the recursive sets are closed under complementation, it suffices to show that every non-empty recursive set is recursively enumerable. Let X be recursive and let $y \in X$. Then, X is enumerated by the function...
9. Recursively Enumerable Sets

\[f(x) = \begin{cases}
 x, & \text{if } \chi_X(x) = 1 \\
 y, & \text{if } \chi_X(x) = 0.
\end{cases} \]

Proposition 9.4

a) \(H \) is recursively enumerable.

b) \(\overline{H} \) is not recursively enumerable.

Proof: \(H = \text{dom } \psi \), where \(\psi(x) = \phi_x(x) \). Since \(H \) is r.e., if \(\overline{H} \) were r.e., then by Proposition 9.3 \(H \) would be recursive, which would contradict Corollary 8.9.

Proposition 9.5

If \(Y \) is recursively enumerable and \(X \leq_m Y \), then \(X \) is recursively enumerable.

Proof: Let \(Y = \text{dom } \psi \), for some partial recursive function \(\psi \), and let \(f \) be a total recursive function such that \(x \in X \iff f(x) \in Y \). Define \(\phi = \psi \circ f \), so that

\[\phi(x) \downarrow \iff \psi(f(x)) \downarrow \iff f(x) \in Y \iff x \in X. \]
Hence, X is r.e.

Definition 9.2 A set Z is called *complete* for the class of recursively enumerable sets with respect to the reducibility \leq_m (called *many-one complete*) if and only if Z is r.e. and for all r.e. sets X, $X \leq_m Z$.

Proposition 9.6 \mathbb{H} is complete for the class of recursively enumerable sets with respect to \leq_m.

Proof: Clearly, \mathbb{H} is r.e. Now, let X be any r.e. set and let x be such that $X = \text{dom } \phi_x$. Define the program transformation f by

$$\phi_{f(i,j)}(z) = \phi_i(j).$$

Then,

$$y \in X \iff \phi_x(y) \downarrow \iff \phi_{f(x,y)}(z) \downarrow \text{ for all } z$$

$$\iff \phi_{f(x,y)}(z) \downarrow \text{ for some } z$$

$$\iff \phi_{f(x,y)}(f(x,y)) \downarrow$$

Define $g(y) = f(x, y)$. Then, $y \in X \iff g(y) \in \mathbb{H}$, so $X \leq_m \mathbb{H}$.

Proposition 9.7 The set \mathbb{FIN} is not recursively enumerable.

Proof: Let the partial recursive ψ and total recursive f be as defined in Proposition 8.11. Then,
9. Recursively Enumerable Sets

Therefore, \(x \in \overline{\mathcal{H}} \iff f(x) \in \mathbb{FIN} \), so \(\overline{\mathcal{H}} \leq_m \mathbb{FIN} \), and by Proposition 9.5, if \(\mathbb{FIN} \) were \(r.e. \), then so would \(\overline{\mathcal{H}} \) be, which contradicts Proposition 9.4.

Definition 9.3 A function is called finite if and only if it has a finite domain.

- Thus, if \(C \) is the class of all finite functions, then \(\mathcal{P}_C = \mathbb{FIN} \).

- We can effectively enumerate the class of finite functions as follows: Since each finite function \(f \) consists of only finitely many pairs \((x_1, y_1), \ldots, (x_n, y_n)\), we can code \(f \) by \(\langle \langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle \rangle \). Next, we define the recursive function \(\psi \) by

\[
\psi(z, x) = \begin{cases}
 y_j, & \text{if } z = \langle \langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle \rangle \\
 \uparrow, & \text{otherwise,} \end{cases}
\]

and \(x = x_j \) and \(1 \leq j \leq n \). Let \(i \) be such that \(\phi_i = \psi \), and let \(\psi_z = \phi_{S(i, z)} \). Then, for any finite function \(f \) with code \(z \), \(\psi(z, x) = f(x) \), and hence \(\psi_z = f \). Also, if \(z \) does not code any finite function, then \(\psi_z = \omega \), the everywhere undefined partial recursive function (which is a finite function). Thus, \{ \(\psi_z \) \} is an effective enumeration of the class of all finite functions.

- We fix \{ \(\psi_i \) \} as the above effective enumeration of the class of all finite functions.
Recursively Enumerable Sets

Observe that there is a very important distinction to be made between effectively enumerating a class C of functions, and effectively enumerating the class PC of all programs for those functions. To enumerate C we need only enumerate one program for each function in C. Thus, the effective enumerability of the class of all finite functions does not contradict Proposition 8.11.

We now consider two lemmas which are very useful for demonstrating that a set PC is not r.e., where C is a class of partial recursive functions.

Lemma 9.8 (Closure Under Finite Subfunctions) If PC is r.e. and $\phi \in C$, then there is some finite function $\psi_z \in C$ such that $\psi_z \subseteq \phi$.

Proof: Let PC be r.e., let $\phi \in C$, and define a program transformation g such that

$$
\phi_g(x)(y) = \begin{cases}
\phi(y), & \text{if } \Phi_x(x) > y \\
\uparrow, & \text{if } \Phi_x(x) \leq y.
\end{cases}
$$

Suppose ϕ has no finite subfunctions which also belong to C. If $x \notin H$, then $\phi_g(x) = \phi$, so $g(x) \in PC$. If $x \in H$, then $\phi_g(x)$ is a finite subfunction of ϕ (since $\phi_g(x)(y) \uparrow$ for all $y \geq \Phi_x(x)$), so $g(x) \notin PC$. Thus, $x \in H \iff g(x) \in PC$, and hence $H \leq_m PC$. But then, since PC is r.e., H is r.e., which is a contradiction.

Therefore, ϕ must contain some finite subfunction $\psi_z \subseteq \phi$, which also belongs to C.

Corollary 9.9 The set TOT is not recursively enumerable.
Lemma 9.10 (Closure Under Superfunctions) If P_C is recursively enumerable and $\phi \in C$, then for any partial recursive function ψ if $\phi \subseteq \psi$, then $\psi \in C$.

Proof: Let P_C be r.e. and let $\phi_i \in C$, and suppose that ψ is a partial recursive function for which $\phi_i \subseteq \psi$. Define the partial recursive function θ by

$$\theta(x, y) = \min z \left[\Phi_x(x) \leq z \text{ or } \Phi_i(y) \leq z \right] = \min \{ \Phi_x(x), \Phi_i(y) \}.$$

Define the program transformation h such that

$$\phi_h(x)(y) = \begin{cases} \phi_i(y), & \text{if } \theta(x, y) \downarrow \text{ and } \Phi_x(x) > \theta(x, y) \\ \psi(y), & \text{if } \theta(x, y) \downarrow \text{ and } \Phi_x(x) \leq \theta(x, y) \\ \uparrow, & \text{if } \theta(x, y) \uparrow. \end{cases}$$

Assume that $\psi \not\in C$. We claim that

$$\phi_h(x) = \begin{cases} \phi_i, & \text{if } x \not\in \mathbb{H} \\ \psi, & \text{if } x \in \mathbb{H}. \end{cases}$$

Presuming the claim is true, we have $x \in \mathbb{H} \iff h(x) \in P_C$, so that $\mathbb{H} \leq_m P_C$, so P_C can't be r.e., which is a contradiction.
To show that claim first suppose that \(x \in H \), then \(\Phi_x(x) \uparrow \).

\[
\begin{align*}
&\text{if } \phi_i(y) \downarrow, \text{ then } \theta(x, y) \downarrow \text{ and } \Phi_x(x) > \theta(x, y); \\
&\text{if } \phi_i(y) \uparrow, \text{ then } \theta(x, y) \uparrow,
\end{align*}
\]

so that in either case \(\phi_{h(x)}(y) = \phi_i(y) \).

Suppose on the other hand that \(x \in H \), then \(\Phi_x(x) \downarrow \) and \(\theta(x, y) \downarrow \).

\[
\begin{align*}
&\text{if } \phi_i(y) \downarrow, \text{ then since } \phi_i \subseteq \psi, \psi(y) \downarrow = \phi_i(y), \text{ so in either case } \phi_{h(x)}(y) = \psi(y); \\
&\text{if } \phi_i(y) \uparrow, \text{ then } \Phi_x(x) \leq \theta(x, y), \text{ so } \phi_{h(x)}(y) = \psi(y).
\end{align*}
\]

Thus, the claim and hence the lemma is proved.

Corollary 9.11 The set \(\overline{\text{TOT}} = \{ x : \phi_x \text{ is not total} \} \), the complement of \(\text{TOT} \), is not recursively enumerable.

Proof: Any total function extends the everywhere undefined function \(\omega \), which belongs to \(\overline{\text{TOT}} \).

Theorem 9.12 (Rice's Theorem for R.E. Sets) Let \(C \) be any class of partial recursive functions. Then, \(P_C = \{ x : \phi_x \in C \} \) is recursively enumerable if and only if there is some r.e. set \(Z \) such that for all \(x \), \(\phi_x \in C \iff \exists z \in Z, \psi_z \subseteq \phi_x \).

Proof:
(\iff): Let Z be a (non-empty) r.e. set such that

$$P_C = \{ x : \psi_z \subseteq \phi_x \text{ for some } z \in Z \}.$$

Define the partial recursive function θ by

$$\theta(w) = \begin{cases} \Pi^2_1(w), & \text{if } \psi_f(\Pi^2_1(w)) \subseteq \phi_{\Pi^2_1(w)} \\ \uparrow, & \text{otherwise.} \end{cases}$$

where the total recursive function f is such that $Z = \text{ran } f$. Observe, that $\psi_j \subseteq \phi_i$, if true, will eventually be discovered, since it entails checking that ϕ_i has the proper outputs on a finite set of inputs. Let $x \in P_C$. Then, $\psi_z \subseteq \phi_x$ for some $z \in Z$. Let y be such that $f(y) = z$, so that $\theta(\langle x, y \rangle_2) = x$. Also, if $\theta(\langle x, y \rangle_2) \downarrow$, then $\theta(\langle x, y \rangle_2) = x$ and $\psi_f(y) \subseteq \phi_x$, so $x \in P_C$. Therefore, $P_C = \text{ran } \theta$.

(\implies):

Let i be such that $P_C = \text{dom } \phi_i$, and let g be a total recursive function such that $\phi_{g(z)} = \psi_z$ for all z. Define the recursively enumerable set Z by $Z = \text{dom } (\phi_i \circ g)$, so that

$$z \in Z \iff \phi_i(g(z)) \downarrow \iff g(z) \in P_C \iff \psi_z \in C.$$

Suppose $\phi_x \in C$. Then by Lemma 9.8, there is some $z \in Z$ such that $\psi_z \subseteq \phi_x$. On the other hand, suppose $\psi_z \subseteq \phi_x$ for some $z \in Z$. Then, $\psi_z \in \text{Cand}$ by Lemma 9.10 $\phi_x \in C$.

10. Recursion Theorem

- **Special Case:**
 There exists a program \(e \) such that \(\phi_e(x) = e \).

- **Cell Analogy:**

 ![Cell Analogy](image)

 Figure 10.1: Cell Analogy

- **Replication Process:**

 ![Replication Process](image)

 Figure 10.2: Replication Process

 1. \(d \) acts on “\(d' \)” to produce new cell
 2. \(d \) copies “\(d' \)” into nucleus of new cell
Observation 10.1

Cell \(x \) with genetic information \(y \)

\[\approx \text{"program" } x \text{ with "data" } y \]

\[\approx S(x, y) \]

Mimicking replication in a general cell we find that for some program \(x \) (which does only replication)

\[\phi_x(y, z) = S(y, y) \]
so that by the S-m-n function,

\[\phi_{S(x,y)}(z) = S(y, y). \]

Now, let \(y = x \), so

\[\phi_{S(x,x)}(z) = S(x, x). \]

Finally, letting \(e = S(x, x) \), we have for all \(z \)

\[\phi_e(z) = e. \]

♠ The program \(e \) is program \(x \) with data \(x \).

Theorem 10.1 (General Form of Recursion Theorem) For every partial recursive function \(\psi : \mathbb{N}^2 \rightarrow \mathbb{N} \) there is a program \(e \) such that for all \(x \), \(\psi(e, x) = \phi_e(x) \).

Proof: Let \(i \) be a program such that

\[\phi_i(y, x) = \psi(S(y, y), x). \]

Then, \(\phi_{S(i,y)}(x) = \psi(S(y, y), x) \). Let \(y = i \) and \(e = S(i, i) \), then we have

\[\phi_e(x) = \phi_{S(i,i)}(x) = \psi(S(i, i), x) = \psi(e, x). \]
10. Recursion Theorem

Theorem 10.2 (Fixed-Point Form of Recursion Theorem) For every program transformation \(f: \mathbb{N} \rightarrow \mathbb{N} \) there is a program \(e \) such that \(\phi_f(e) = \phi_e \).

Proof: Let \(f: \mathbb{N} \rightarrow \mathbb{N} \) be a total recursive function and define the partial recursive function \(\psi \) by

\[
\psi(y, x) = \phi_f(y)(x).
\]

Then, by Theorem 10.1 there exists a program \(e \) such that \(\phi_e(x) = \psi(e, x) = \phi_f(e)(x) \).

Proposition 10.3 For every program transformation \(f: \mathbb{N}^3 \rightarrow \mathbb{N} \), there exists a program transformation \(g: \mathbb{N}^2 \rightarrow \mathbb{N} \) such that \(\phi_f(i, j, g(i, j)) = \phi_g(i, j) \) for all \(i \) and \(j \).

Proof: Define the partial recursive function \(\psi \) by

\[
\psi(y, i, j, x) = \phi_f(i, j, S(y, i, j))(x).
\]

By Theorem 10.1 there exists a program \(e \) such that \(\phi_e(i, j, x) = \psi(e, i, j, x) \). Let \(g(i, j) = S(e, i, j) \). Then,

\[
\phi_g(i, j)(x) = \phi_S(e, i, j)(x) = \phi_e(i, j, x) = \psi(e, i, j, x) = \phi_f(i, j, S(e, i, j))(x) = \phi_f(i, j, g(i, j))(x)
\]
As a consequence of the General Form of the Recursion Theorem we will, whenever we need to, assume that programs which we construct have copies of themselves built into them.

- **10.1 Applications of the Recursion Theorem**
 - 10.1.1 Machine Learning
 - 10.1.2 Speed-Up Theorem

Next: 10.1 Applications of the Recursion Theorem Up: Lecture Notes for CS 2110 Introduction to Theory Previous: 9. Recursively Enumerable Sets

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.
10.1 Applications of the Recursion Theorem

Corollary 10.4 The set TOT is not recursively enumerable.

Proof: Suppose that TOT is r.e., and let f be a total recursive function such that $\text{ran } f = \text{TOT}$. Define the partial recursive function ψ by

$$
\psi(x, y) = \begin{cases}
0, & \text{if } \forall z \leq y f(z) \neq x \\
\uparrow, & \text{if } \exists z \leq y f(z) = x.
\end{cases}
$$

By the Recursion Theorem there is a program e such that $\psi(e, y) = \phi_e(y)$, so that

$$
\phi_e(y) = \begin{cases}
0, & \text{if } \forall z \leq y f(z) \neq e \\
\uparrow, & \text{if } \exists z \leq y f(z) = e.
\end{cases}
$$

Suppose that ϕ_e is total. Then, $e \in \text{TOT}$ and so $e \in \text{ran } f$, but by the definition of ψ, we see that $\forall z f(z) \neq e$, which is a contradiction. On the other hand, suppose that ϕ_e is not total. Then, $e \not\in \text{ran } f$, but again from the definition of ψ we see that $\exists z f(z) = e$, which again is a contradiction. Therefore, no such function f can exist.

Proposition 10.5 (Inefficiency Lemma) There exists a program transformation $g : \mathbb{N}^2 \rightarrow \mathbb{N}$ such
that

\[\text{dom } \phi_{g(i,j)} = \text{dom } \phi_i \cap \text{dom } \phi_j \]

and

\[\forall x \in \text{dom } \phi_{g(i,j)} \left[\phi_{g(i,j)}(x) = \phi_i(x) \land \Phi_{g(i,j)}(x) > \phi_j(x) \right]. \]

Proof: Define the program transformation \(f : \mathbb{N}^3 \rightarrow \mathbb{N} \) by

\[
\phi_{f(i,j,k)}(x) = \begin{cases}
\phi_k(x) + 1, & \text{if } \Phi_k(x) \leq \phi_j(x) \\
\phi_i(x), & \text{otherwise.}
\end{cases}
\]

By Proposition 10.3 there exists a program transformation \(g : \mathbb{N}^2 \rightarrow \mathbb{N} \) such that \(\phi_{g(i,j)} = \phi_{f(i,j,g(i,j))} \). Then, we have

\[
\phi_{g(i,j)}(x) = \begin{cases}
\phi_{g(i,j)}(x) + 1, & \text{if } \Phi_{g(i,j)}(x) \leq \phi_j(x) \\
\phi_i(x), & \text{otherwise.}
\end{cases}
\]

Therefore, if \(\phi_{g(i,j)}(x) \downarrow \), then \(\phi_{g(i,j)}(x) = \phi_i(x) \) and \(\Phi_{g(i,j)}(x) > \phi_j(x) \).

- **10.1.1 Machine Learning**

10.1 Applications of the Recursion Theorem

- **10.1.2 Speed-Up Theorem**
10.1.1 Machine Learning

Figure 10.5: Learning By Example Scenario

- We view a learning algorithm (or inductive inference machine) as a total recursive function M which takes as input a finite portion of the graph of some (total recursive) function f and produces as output (the code of) some program p which is its conjecture for f.
- We say that M learns a function f in the limit if eventually it converges to a fixed conjecture which is a correct program for f.
- We now formalize these notions: If $\{x_i\}$ denotes a sequence of numbers $x_0, x_1,...$, then

$$\lim_{n \to \infty} x_n = x$$

means that $\exists m \forall n \geq m \ x_n = x$ (or equivalently $\forall n \ x_n = x$). In this case we say that $\{x_i\}$ converges in the limit to x.

Given a total function \(f: \mathbb{N} \rightarrow \mathbb{N} \), we denote by \(f|n \), the finite subfunction of \(f \) consisting of \(f \) restricted to the set \(\{0, 1, 2, \ldots, n\} \), and code it by \(\langle f(0), \ldots, f(n) \rangle_n \).

Definition 10.1 We say that a total recursive function \(M \) is a total learner if \(M \) conjectures only programs for total functions, i.e., \(\forall x \Phi_M(x) \) is a total recursive function.

Definition 10.2 We say that the total learner \(M \) learns a function \(f \) syntactically in the limit (written \(f \in SYN\big\langle t\big\rangle [M] \)) if and only if the sequence of conjectures \(p_n = M(f|n) \) by \(M \) on \(f \) converges to a correct program \(p \) for \(f \), i.e.,

1. **(Convergence Criterion)** \(\lim_{n \to \infty} p_n = p \), and
2. **(Correctness Criterion)** \(\Phi_p = f \).

We denote by \(R \) the class of all total recursive functions.

We denote by \(SYN\big\langle t\big\rangle \) the class of sets of functions which can be learned with respect to \(SYN\big\langle t\big\rangle \)-type learning:

\[
SYN\big\langle t\big\rangle = \{S \subseteq R : \exists M S \subseteq SYN\big\langle t\big\rangle [M]\}.
\]

Theorem 10.6 \(R \not\subseteq SYN\big\langle t\big\rangle \).

Proof: Given any \(M \) we can define via the Recursion Theorem a function \(\Phi_e \in R \) such that \(\Phi_e \not\in SYN\big\langle t\big\rangle [M] \) by

\[
\Phi_e(0) = e
\]
\[\phi_e(x + 1) = 1 + \phi_M(\phi_e|x)(x + 1). \]

Observe that since for all \(y \), \(\phi_M(y) \in \mathbb{R} \), the function \(\phi_e \in \mathbb{R} \). Let \(p_n = M(\phi_e | n) \). Suppose now that there is some program \(p \) such that \(p = \lim_{n \to \infty} p_n \), and let \(m \) be so large that \(\forall n \geq m \ p_n = p \). Then,

\[\phi_e(m + 1) = 1 + \phi_M(\phi_e|m)(m + 1) = 1 + \phi_p(m + 1), \]

so that \(M \) cannot converge in the limit to a correct program for \(\phi_e \).

Observe that although \(M \) has the index \(e \) available to it, it can't produce \(e \) as its answer, since in general \(e \) might not compute a total function.
From the definition of DLP_{time} that it is possible to ``speed-up'' (i.e., reduce) the computation time and space for any recursive function be choosing a program over a larger alphabet. Here, we imagine that we have an acceptable programming system consisting of $LOOP$ programs (or RAM programs) over all possible alphabets, where the alphabet on which a program is based is included in its coding. We have also observed that any program for a recursive function can be sped-up on finitely many of its inputs by building a finite table for those inputs into that program.

Definition 10.3 Let h be a total recursive function. A program i is called h-optimal for a partial recursive function f if and only if

$$\Phi_i = f$$

and

$$\forall j \Phi_j = f \implies \forall x \Phi_i(x) \leq h(\Phi_j(x)).$$

Thus, modulo h, the program i is as fast as any program for f.

Question 10.1 Does there exist a total recursive function h such that every partial recursive function has an h-optimal program?

Theorem 10.7 (Speed-Up) For every total recursive function h there exists a total recursive function f such that

$$\forall i \Phi_i = f \implies \exists j \Phi_j = f \text{ and } \forall x \Phi_i(x) > h(\Phi_j(x)).$$
Corollary 10.8 For every total recursive function h there exists a total recursive function f that has no h-optimal program.

Figure 10.7: Repeated Speed-Up

Definition 10.4 A complexity sequence for a total recursive function f is a set of total functions $\{t_i\}$ such that

1. $\forall n \exists j \phi_j = f$ and $\Phi_j \leq t_n$ a.e.

2. $\forall j \phi_j = f \implies \exists m t_m \leq \Phi_j$ a.e.

Thus a complexity sequence $\{t_i\}$ is cofinal with $\{\Phi_i : \phi_i = f\}$.

Figure 10.7: Complexity Sequence
If we can construct a complexity sequence \(\{t_i\} \) for a function \(f \) such that \(h \circ t_{n+1} \leq t_n \) a.e., then \(f \) has \(h \)-speed-up:

\[\phi_i = f \implies (2) \exists m \ t_m \leq \Phi_i \text{ a.e.} \]

\[\implies (1) \exists j \ \phi_j = f \text{ and } \theta_j \leq t_{m+1} \text{ a.e.} \]

\[\implies \exists j \ \phi_j = f \text{ and } h \circ \Phi_j \leq h \circ t_{m+1} \leq t_m \leq \Phi_i \text{ a.e.} \]

Proof: (of Speed-Up Theorem)

Construction of \(f \):

The construction of \(f \) is a modification of the standard diagonalization argument (see Theorem 8.7), but is biased against smaller programs (which have less information content). We can assume without loss of generality that \(h \) is strictly increasing, i.e., \(h(x) > x \).
10.1.2 Speed-Up Theorem

\[
\phi_{\sigma(i,u,v)}(x) = \begin{cases}
y_j, \text{ if } v = \langle \langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle \rangle_n \\
\text{and } x = x_j \text{ and } 1 \leq j \leq n
\end{cases}
\]

\[1 + \max \{ \phi_j(x) : u \leq j \leq x \text{ and } \Phi_j(x) \leq \Phi_i(x - j) \text{ and }\]

\[(\ast) \forall y \ u \leq y \leq x \land j \leq y \implies \Phi_j(y) > \Phi_i(y - j) \} , \]

otherwise.

Define, \(f = \phi_{\sigma(i,0,0)} \), where the function \(\phi_i \) is yet to be determined.

\[\blacklozenge \text{ Observe, by } (\ast) \text{ that } \phi_j \text{ can affect only one argument } x \text{ in the definition of } f.\]

For the present we will assume that \(\phi_i \) is total, so that \(f \) is also total. We first have that

\[\phi_j = f \iff \forall x \geq j \ \Phi_j(x) > \Phi_i(x - j) \quad (10.1)\]

This is so because if \(x \geq j \) and \(\Phi_j \leq \Phi_i(x - j) \), then since \(u = v = 0 \), \(f(x) \geq 1 + \phi_j(x) \).

\[\text{ Construction of Table } \nu:\]

Next,

\[\forall u \ \exists v \ \phi_{\sigma(i,u,v)} = f. \quad (10.2)\]

By our previous observation, we have for all \(u \) and \(v \),

\[\phi_{\sigma(i,u,v)} = \phi_{\sigma(i,0,0)} \quad \text{a.e.}\]

\[\text{Figure 10.8}: \text{Speed-Up Table}\]
The required "table" is given by

\[v = \left\langle \left\langle x_1, f(x_1) \right\rangle_2, \ldots, \left\langle x_{u-1}, f(x_{u-1}) \right\rangle_2 \right\rangle_u, \]

where for each \(j, 1 \leq j < u \), \(x_j \) was the only value affected by diagonalization against \(\phi_j \).

Construction of function \(r \):

Next, there exists a total recursive function \(r \) such that

\[r(x) > x \]

and

\[\forall i \forall u \forall v \forall x \Phi_{\sigma(i,u,v)}(x) \leq r(\max \{ \Phi_i(y) : 0 \leq y \leq x - u \}). \quad (10.3) \]

We define
10.1.2 Speed-Up Theorem

\[
g(i, u, v, x, z) = \begin{cases}
\Phi_{\sigma(i,u,v)}(x), & \text{if } z \geq \max\{\Phi_i(x - j) : u \leq j \leq x\} \\
(\equiv z \geq \max\{\Phi_i(y) : 0 \leq y \leq x - u\}) \\
0, & \text{otherwise}.
\end{cases}
\]

Then define

\[
r(z) = \max\{g(i, u, v, x, z), z + 1 : i, u, v, x \leq z\}.
\]

Then, for all \(x \geq u \),

\[
r(\max\{\Phi_{\sigma}^{\Phi_i}(y) : 0 \leq y \leq x - u\}) \geq g(i, u, v, x, \max\{\Phi_{\sigma}^{\Phi_i}(y) : 0 \leq y \leq x - u\})
\]

\[
\geq \Phi_{\sigma(i,u,v)}(x)
\]

Observe, that in the definition of \(r \) the maximum is taken over all \(i \leq z \), which may include programs \(i \) for non-total functions. Observe also that \(r \) is strictly increasing.

- **Construction of complexity sequence \(\{t_n\} \):**

 We now construct the complexity sequence \(\{t_n\} \). Define,

 \[
t_n(x) = \Phi_{\sigma}^\Phi_i(x - n).
\]

Suppose \(\sigma_j = f \), then by (10.1) for \(x \geq j \) we have \(\Phi_{\sigma}^\Phi_j(x) > \Phi_{\sigma}^\Phi_i(x - j) = t_j(x) \). Thus, condition (2) in the definition of a complexity sequence is satisfied.

Suppose \(\Phi_{\sigma}^\Phi_i \) is such that
10.1.2 Speed-Up Theorem

\[\Phi_i(x + 1) \geq h(r(\Phi_i(x))), \]
\[(10.4) \]

so that \(\Phi_i(x + 1) > \Phi_i(x) \), since \(h \) and \(r \) are strictly increasing functions.

Then, using (10.3), that \(\Phi_i \) is increasing, and (10.4) we have,

\[
\begin{align*}
 h(\Phi_{(i,u,v)}(x)) &\leq h(r(\max\{\Phi_i(y) : 0 \leq y \leq x - u\})) \\
 &\leq h(r(\Phi_i(x - u))) \\
 &\leq \Phi_i(x - u + 1) = \Phi_i(x - (u - 1)) = t_{u - 1}(x).
\end{align*}
\]

Therefore, given \(n \), by (10.2) there exists a \(j = \sigma(i, n + 1, v) \), for an appropriate \(v \) such that

\[\phi_j = f \quad \text{and} \quad \Phi_j \leq h \circ \phi_j \leq t_n \quad \text{a.e.} \]

so that condition (1) in the definition of a complexity sequence is satisfied. Moreover,

\[
\begin{align*}
t_m(x) = \Phi_i(x - m) &\geq h(r(\Phi_i(x - (m + 1)))) \\
 &\geq h(\Phi_i(x - (m + 1))) \\
 &\geq (h \circ t_{m + 1})(x)
\end{align*}
\]

Thus, \(\{t_n\} \) is the desired complexity sequence.

Construction of an appropriate \(\phi_i \):

Define
10.1.2 Speed-Up Theorem

\[\psi(i,x) = \begin{cases}
0, & \text{if } x = 0 \\
\phi_i(x) + 1, & \text{if } \Phi_i(x) \leq \max\{\Phi_i(x-1), h(r(\Phi_i(x-1)))\} \\
x, & \text{otherwise.}
\end{cases} \]

By the Recursion Theorem there exists an \(i_0\) such that \(\psi(i_0,x) = \phi_{i_0}(x)\) for all \(x\). Then, clearly \(\Phi_{i_0}(x) > h(r(\Phi_{i_0}(x-1)))\). Observe, also that \(\phi_{i_0}\) is total, which can be proved by induction on the domain of \(\phi_{i_0}\).
11. Non-Deterministic Computations

- Recall that non-deterministic LOOP programs (i.e., NLOOP programs) are obtained by adding the following SELECT statement:

 \[
 \text{SELECT}(X_1)
 \]

 which assigns either a 0 or a 1 non-deterministically to the variable \(X_1\).

- Similarly, non-deterministic RAM programs (i.e., NRAM programs) are obtained by adding the following JUMP instruction:

 \[
 2k + 4/j_1/j_2; \quad \text{njp}_{j_1 \text{ or } j_2}
 \]

 which non-deterministically selects one of two lines \((j_1 \text{ or } j_2)\) to jump to.

- We will investigate non-deterministic computations by means of NRAM programs, but we could equally use NLOOP programs.

Definition 11.1 Given an NRAM program \(P\) and an input \(x\), an accepting computation of \(P\) on \(x\) is any legal sequence of instruction executions of \(P\) for which that last instruction executed is the output instruction of \(P\), i.e., for which \(P\) halts.

Definition 11.2 We say that the NRAM program \(P\) accepts the input \(x\) if and only if there exists some accepting computation of \(P\) on \(x\). We define the set accepted by the NRAM program \(P\) by

\[
L_P = \{x : P \text{ accepts } x\}.
\]

Thus, a non-deterministic computation has the following tree-like structure, where each node of the tree represents a non-deterministic branch point (i.e., execution of a np instruction).

Figure 11.1: Non-Deterministic Computation
In order to view the execution of a \texttt{njp} instruction as a non-deterministic selection of a branch point, we can imagine that it corresponds to a bifurcation of a process which is executing the program and which creates two child processes each of which branches to one of the two possible branch points, and such that when a child process halts, it will cause its parent process to halt, etc. Thus, we can alternate (and perhaps more realistic) view of non-determinism is as unbounded parallelism.

Theorem 11.1 Every set accepted by a \textit{NRAM} program can be accepted by a \textit{DRAM} program.

Proof: It suffices to show that every set accepted by an \textit{NRAM} program is the domain of some partial recursive function. Recall in the construction of the universal partial recursive function for \textit{DRAM} programs we defined primitive recursive functions \texttt{nxl} and \texttt{nxv}, which \textit{computed} the next line and next register contents during the simulation. However, since the program which we now wish to simulate is non-deterministic, it is no longer the case that the next line to be executed is determined by (i.e., is a function of) the current line and current contents. Instead, we now construct a primitive recursive predicate \texttt{Nx} which decides whether or not a given line \textit{can legally be} the next line. Moreover, since the sequence of computation steps is no longer determined by the program and input, we will define a predicate \texttt{Ace} that will decide whether or not a given sequence of program states represents an accepting computation.

First we need to provide some parsing predicates which allow us to parse \textit{NRAM} programs:

\[
gol(x) = \begin{cases}
 \text{prt}_{k+2}(\text{'} x \text{'), } & \text{if } \text{opc}(x) = 2k + 4 \\
 0, & \text{otherwise.}
\end{cases}
\]
11. Non-Deterministic Computations

\[
\text{go2}(x) = \begin{cases}
\text{prt}_{k+2}(\text{'/'}, x, 2), & \text{if } \text{opc}(x) = 2k + 4 \\
0, & \text{otherwise.}
\end{cases}
\]

which produce the two branch points of the \text{njp} instruction coded by \(x\). We also need to define the predicates \(\text{Ins}(x)\) and \(\text{Prg}(x)\) which decide whether or not \(x\) codes a legal instruction and program respectively. Then, we define the primitive recursive predicate

\[
\text{Nxl}(p, y, z, j, r) \equiv (\text{opc}(\text{lne}(j, p)) \neq 2k + 4 \Rightarrow r = \text{nxl}(p, y, z, j)) \land \\
(\text{opc}(\text{lne}(j, p)) = 2k + 4 \Rightarrow \ (r = \text{go1}(\text{lne}(j, p)) \lor r = \text{go2}(\text{lne}(j, p))))
\]

Next, let \(w\) code for a comma separated sequence \(s_0, s_1, \ldots, s_n\) of numbers each of which is interpreted as a pair representing a state (line number, register contents) of the program \(p\) during its execution.

Then, the predicate \(\text{Acc}(p, y, w)\), where \(p\) codes the program and \(y\) codes the input, is defined by:

\[
\text{Acc}(p, y, w) \equiv (\text{lin}(w, 0) = 1 \land \text{con}(w, 0) = \text{zro}(\text{mxr}(p))) \land \\
(\text{lin}(w, \text{noc}_k + 1(\text{','}, w)) = \text{lng}(p)) \land \\
\forall j < \text{noc}_k + 1(\text{','}, w)[\text{Nxl}(p, y, \text{con}(w, j), \text{lin}(w, j), \text{lin}(w, j + 1)) \land \\
\text{nxs}(p, y, \text{con}(w, j), \text{lin}(w, j)) = \text{con}(w, j + 1)]
\]

where \(\text{lin}(w, j)\) and \(\text{con}(w, j)\) give the line number and register contents for the \(j\)th state in \(w\) and are defined by

\[
\text{lin}(w, j) = \prod_{1}^{2} (\text{prt}_{k+1}(\text{','}, w, j)) \\
\text{con}(w, j) = \prod_{2}^{2} (\text{prt}_{k+1}(\text{','}, w, j)).
\]

Finally, we see that
\[L_p = \text{dom } \phi \]

where the partial recursive function \(\phi \) is defined by

\[\phi(y) = \min_w [\text{Acc}(p, y, w)]. \]
11.1 Complexity of Non-Deterministic Programs

Definition 11.3 Let P be a NRAM program over Σ^*_k (where $k > 1$), then we define the following complexity measures for P.

\[
\text{NRAMtime}_P(x) = \begin{cases}
\min \text{ over all accepting computations} \\
| x | + \# \text{ of stmts of } P \text{ executed on input } x, \\
\text{if } P \text{ halts on it}, \\
\uparrow, \text{ otherwise.}
\end{cases}
\]

\[
\text{NRAMspace}_P(x) = \begin{cases}
\min \text{ over all accepting computations} \\
\max \sum_{i=1}^r | R_i^t |, \forall t \leq \text{ DRTime}_P(x), \\
\text{if } P \text{ halts}, \\
\uparrow, \text{ otherwise.}
\end{cases}
\]

where R_i^t denotes the contents of register R_i at step t of the computation of P on input x.

Thus, for non-deterministic computations the complexity is defined in terms of the most efficient (with respect to time or space) accepting computation. The rationale for this is that since the program is allowed to "guess" an accepting computation it might as well be allowed to guess the most efficient accepting computation. Observe that the most space efficient accepting computation need not be the most time efficient one, and vice versa.

Definition 11.4 We define the following (deterministic) complexity classes:
11.1 Complexity of Non-Deterministic Programs

\[\text{DPTIME} = \{ L : \exists \text{ DRAM program } P \text{ and a polynomial function } t \text{ such that } P \text{ computes } \chi_L \text{ and } \forall x \ DRA M t i m e_P(x) \leq t(|x|) \}. \]

\[\text{DPSPACE} = \{ L : \exists \text{ DRAM program } P \text{ and a polynomial function } t \text{ such that } P \text{ computes } \chi_L \text{ and } \forall x \ DRA M s p a c e_P(x) \leq t(|x|) \}. \]

- Aliases for \text{DPTIME} is \(\mathbf{P} \), and for \text{DPSPACE} is \(\mathbf{PSPACE} \).
- The definitions of \text{DPTIME} and \text{DPSPACE} are independent of the (standard) model of computation used (see Proposition 7.6).

\textbf{Definition 11.5} We define the following (non-deterministic) complexity classes:

\[\text{NPTIME} = \{ L : \exists \text{ NRAM program } P \text{ and a polynomial function } t \text{ such that } P \text{ accepts } L \text{ and } \forall x \in L \ NRAMt i m e_P(x) \leq t(|x|) \}. \]

\[\text{NPSPACE} = \{ L : \exists \text{ NRAM program } P \text{ and a polynomial function } t \text{ such that } P \text{ accepts } L \text{ and } \forall x \in L \ NRAM s p a c e_P(x) \leq t(|x|) \}. \]

- Aliases for \text{NPTIME} is \(\mathbf{NP} \), and for \text{NPSPACE} is \(\mathbf{NSPACE} \).
11.2 NP-Completeness

Definition 11.6 We say that a function \(f \) is \textit{polynomial-time computable} if and only if there is some DRAM program \(P \) and a polynomial function \(t \) such that \(P \) computes the function \(f \) and \(\text{DRAMtime}_P(x) \leq t(|x|) \). We say that the set \(Y \) is \textit{polynomial-time reducible} to the set \(X \) (written \(Y \leq_p X \)) if and only if there exists a polynomial-time computable function \(f \) such that \(y \in Y \iff f(y) \in X \).

\[\blacklozenge \text{ Observe if } f \text{ is computable in polynomial time } t, \text{ then } |f(x)| \leq t(|x|). \]

Definition 11.7 A set \(X \) is called \textit{NP-complete} if and only if \(X \) is complete for \(\mathsf{NP} \) with respect to \(\leq_p \), i.e., \(X \in \mathsf{NP} \) and \(Y \leq_p X \) for all \(Y \in \mathsf{NP} \).

Definition 11.8 A propositional formula \(B \) is called \textit{satisfiable} if and only if there exists some assignment of truth values to its variables which makes the value of \(B \) true.

Example 11.1 Let \(B = (x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \). Then \(B \) is satisfiable via the assignment \(x_1 = T, x_2 = F, x_3 = T \).

Definition 11.9 \(\mathsf{SAT} \) is the set of all satisfiable propositional formulas in conjunctive normal form.

Proposition 11.2 \(\mathsf{SAT} \in \mathsf{NP} \).

\[\textbf{Proof:} \] A non-deterministic algorithm works as follows:
Given a propositional formula \(B \) with variables \(x_1, \ldots, x_n \), it:

- guesses (correctly, if possible) a satisfying truth assignment to \(x_1, \ldots, x_n \);
- verifies that the chosen assignment to \(x_1, \ldots, x_n \) makes the value of \(B \) true, and if so, accepts.

Thus, if \(B \in \mathsf{SAT} \), then there is some assignment to \(x_1, \ldots, x_n \), so the algorithm will `guess' it and so will accept. If
11.2 NP-Completeness

If \(B \not\in SAT \), then no guess will make the value of \(B \) true, so the algorithm does not accept.

Figure 11.2: Non-Deterministic Computation for \(B = (x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \)

Theorem 11.3 \(SAT \) is \(NP \)-complete.

Proof: It suffices to show that every set \(X \in \text{NP} \) is polynomial-time reducible to \(SAT \). Let \(X \in \text{NP} \) and let \(P \) be a \(NRAM \) program over \(\Sigma_k^* \) which accepts \(X \) in polynomial time \(p \), i.e., \(x \in X \iff \text{NRAM} time_p(x) \leq p(|x|) \). We construct for each \(x \) a propositional formula \(B_x \) in conjunctive normal form such that \(x \in X \iff B_x \) is satisfiable.

The propositional formula \(B_x \) must be satisfiable if and only if there is an accepting computation of \(P \) on input \(x \), so we will need to describe \(NRAM \) computation by means of propositional variables and formulas. Let \(m \) be the number of lines of \(P \) and let \(w \) be the maximum number register named in \(P \). Let \(x = a_1 \ldots a_n \), so \(|x| = n\). We will represent the contents of each register by a string of length \(p(n) \) over \(\Sigma_{k+1} \), where we use the \(k+1 \)st symbol as a blank \(□ \) to pad (to the right) the actual contents so the representation is exactly of length \(p(n) \). Length \(p(n) \) suffices since we can add at most one symbol per time step to the contents of any register and since the length of the input is included in the computation time.

We first introduce polynomially many propositional variables as follows:

Table 11.1: Variables for \(B_x \)
We also introduce notation for the various symbols which occur in any given line \(j\) (depending on the type of instruction).

<table>
<thead>
<tr>
<th>Constant</th>
<th>Description</th>
<th>Instruction Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_j)</td>
<td>Register named in line (j)</td>
<td>All, except (\text{njp})</td>
</tr>
<tr>
<td>(s_j)</td>
<td>Symbol named in line (j)</td>
<td>(\text{jmp}) and (\text{suc})</td>
</tr>
<tr>
<td>(g_j)</td>
<td>Goto part of line (j)</td>
<td>(\text{jmp})</td>
</tr>
<tr>
<td>(g_j^1)</td>
<td>First goto part of line (j)</td>
<td>(\text{njp})</td>
</tr>
<tr>
<td>(g_j^2)</td>
<td>Second goto part of line (j)</td>
<td>(\text{njp})</td>
</tr>
</tbody>
</table>

- Part of the definition of \(B_x\) will be devoted to making sure that the intended interpretation of the above variables is in fact the actual meaning.
- In order to describe in a more readable form the formula \(B_x\), we introduce the following notation. Let \(E(z)\) be some propositional formula with variable symbol \(z\), where \(E(z)\) is well formed for all \(u \leq z \leq v\). Then,

\[
\bigvee_{z=u}^v E(z) \text{ stands for } E(u) \lor E(u+1) \lor \ldots \lor E(v)
\]

\[
\bigwedge_{z=u}^v E(z) \text{ stands for } E(u) \land E(u+1) \land \ldots \land E(v)
\]

- Observe that if \(A_1, \ldots, A_u\) and \(B_1, \ldots, B_v\) are literals, then the formula \(A_1 \land \cdots \land A_u \implies B_1 \lor \cdots \lor B_v\) is
logically equivalent to \(\neg A_1 \lor \cdots \lor \neg A_u \lor B_1 \lor \cdots \lor B_v \), and so is a single disjunction of literals.

- To further enhance the readability of \(B_x \) we will assign types to certain variables and abbreviate quantifiers over these variables as indicated in the following table.

<table>
<thead>
<tr>
<th>Var.</th>
<th>Type</th>
<th>Range</th>
<th>(\exists)</th>
<th>(\forall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t)</td>
<td>time</td>
<td>(0 \leq t \leq p(n))</td>
<td>(\bigvee_{t=0}^{p(n)})</td>
<td>(\bigwedge_{t=0}^{p(n)})</td>
</tr>
<tr>
<td>(i)</td>
<td>positions</td>
<td>(1 \leq i \leq p(n))</td>
<td>(\bigvee_{i=1}^{p(n)})</td>
<td>(\bigwedge_{i=1}^{p(n)})</td>
</tr>
<tr>
<td>(r)</td>
<td>registers</td>
<td>(1 \leq r \leq w)</td>
<td>(\bigvee_{r=1}^{w})</td>
<td>(\bigwedge_{r=1}^{w})</td>
</tr>
<tr>
<td>(s)</td>
<td>symbols</td>
<td>(1 \leq s \leq k + 1)</td>
<td>(\bigvee_{s=1}^{k+1})</td>
<td>(\bigwedge_{s=1}^{k+1})</td>
</tr>
<tr>
<td>(j)</td>
<td>lines</td>
<td>(1 \leq j \leq m)</td>
<td>(\bigvee_{j=1}^{m})</td>
<td>(\bigwedge_{j=1}^{m})</td>
</tr>
</tbody>
</table>

- We will also use the abbreviation \(\exists_1 s \ E(s) \) (read ``there exists a unique \(s \) such that \(E(s) \)') for the expression

\[
\exists_s E(s) \land \forall_{s_1}^k \bigwedge_{s_2=1, s_2 \neq s_1} (\neg E(s_1) \lor \neg E(s_2))
\]

Observe that the above expression is in conjunctive normal form. Similarly, \(\exists_1 j \ E(j) \) stands for

\[
\exists_j E(j) \land \forall_{j_1}^m \bigwedge_{j_2=1, j_2 \neq j_1} (\neg E(j_1) \lor \neg E(j_2))
\]
In this context the meaning of the quantifiers $\forall t<p(n)$, $\forall i>n$, etc., should also be clear.

- The formula B_x consists of the conjunction of several "subformulas" B_1, ..., B_6 which are defined below, i.e., $B_x = B_1 \land \ldots \land B_6$.

B_1:
The formula B_1 asserts that at each point in time each bit position of each register contains a unique symbol:

$$\forall t \forall i \forall r \exists_1 s \text{ } SMB[t : i : r : s]$$

B_2:
The formula B_2 asserts that at each point in time there is a unique current line number:

$$\forall t \exists_1 j \text{ } LIN[t : j]$$

B_3:
The formula B_3 asserts that the computation begins correctly:

$$LIN[0 : 1] \land \forall r \forall i \text{ } SMB[0 : i : r : \bot]$$

B_4:
The formula B_4 asserts that at some point in time the last line of P is reached:

$$\exists t \text{ } LIN[t : m]$$

B_5:
The formula B_5, which is a conjunction of subformulas $B_{5,1}$, ..., $B_{5,5}$, asserts that at any point in time the next line to be executed is legally reachable from the current line:

$B_{5,1}$
\[\forall t < p(n) \quad LIN[t : m] \implies LIN[t + 1 : m] \]

Each of the following subformulae are included for each line \(j \) of the specified type:

- **\(B_{5.2} \):**

 for each line \(j \) which is not a \texttt{jmp}, \texttt{njp}, or \texttt{out} instruction

\[\forall t < p(n) \quad LIN[t : j] \implies LIN[t + 1 : j + 1] \]

- **\(B_{5.3} \):**

 for each line \(j \) which is a \texttt{jmp} instruction

\[\forall t < p(n) \quad LIN[t : j] \land \neg SMB[t : 1 : r_j : s_j] \implies LIN[t + 1 : j + 1] \]

- **\(B_{5.4} \):**

 for each line \(j \) which is a \texttt{jmp} instruction

\[\forall t < p(n) \quad LIN[t : j] \land SMB[t : 1 : r_j : s_j] \implies LIN[t + 1 : g_j] \]

- **\(B_{5.5} \):**

 for each line \(j \) which is a \texttt{njp} instruction

\[\forall t < p(n) \quad LIN[t : j] \implies LIN[t + 1 : g_j^1] \lor LIN[t + 1 : g_j^2] \]

- **\(B_{6} \):**

 The formula \(B_6 \), which is a conjunction of subformulas \(B_{6.1}, \ldots, B_{6.9} \), asserts that at any point in time the next register contents are correctly calculated:

- **\(B_{6.1} \):**

 for each line \(j \) and for all \(r \neq r_j \) or for all \(r \) if line \(j \) is a \texttt{njp} or \texttt{jmp} instruction

\[\forall t < p(n) \quad \forall i \forall s \quad LIN[t : j] \land SMB[t : i : r : s] \implies SMB[t + 1 : i : r : s] \]
\(B_6.2: \)

for line 0 which is an \textbf{inp} instruction and time 1

\[\forall i \leq n \ SMB[1 : i : r_0 : a_i] \]

\(B_6.3: \)

for line 0 which is an \textbf{inp} instruction and time 1

\[\forall i > n \ SMB[1 : i : r_0 : \square] \]

\(B_6.4: \)

for each line \(j \) which is a \textbf{suc} instruction

\[\forall t < p(n) \ \forall i \ \forall s \leq k \ LIN[t : j] \land SMB[t : i : r_j : s] \Rightarrow \]

\[SMB[t + 1 : i : r_j : s] \]

\(B_6.5: \)

for each line \(j \) which is a \textbf{suc} instruction

\[\forall t < p(n) \ \forall i < p(n) \ LIN[t : j] \land \neg SMB[t : i : r_j : \square] \land \]

\[SMB[t : i + 1 : r_j : \square] \Rightarrow SMB[t + 1 : i + 1 : r_j : s_j] \]

\(B_6.6: \)

for each line \(j \) which is a \textbf{suc} instruction

\[\forall t < p(n) \ \forall i < p(n) \ LIN[t : j] \land SMB[t : i : r_j : \square] \land \]

\[SMB[t : i + 1 : r_j : \square] \Rightarrow SMB[t + 1 : i + 1 : r_j : \square] \]
11.2 NP-Completeness

\[B_{6.7} \] for each line \(j \) which is a \textbf{suc} instruction

\[\forall t < p(n) \ \text{LIN}[t : j] \land \text{SMB}[t : 1 : r_j : \|] \implies \text{SMB}[t + 1 : 1 : r_j : s_j] \]

\[B_{6.8} \] for each line \(j \) which is an \textbf{lsf} instruction

\[\forall t < p(n) \ \forall i < p(n) \ \forall s \ \text{LIN}[t : j] \land \text{SMB}[t : i + 1 : r_j : s] \implies \text{SMB}[t + 1 : i : r_j : s] \]

\[B_{6.9} \] for each line \(j \) which is an \textbf{lsf} instruction

\[\forall t < p(n) \ \text{LIN}[t : j] \implies \text{SMB}[t + 1 : p(n) : r_j : \|] \]

This completes the construction of the formula \(B_x \). To complete the proof it is necessary to prove by induction on the time \(t \) that

1. if \(B_x \) is satisfiable, then there exists an accepting computation for \(P \) on input \(x \). The accepting computation is constructed from the satisfying assignment to the variables of \(B_x \); and
2. if \(P \) accepts input \(x \), then there is a satisfying assignment to the variables of \(B_x \). The satisfying assignment is constructed from the accepting computation of \(P \) on input \(x \).

Proposition 11.4 For any set \(X \), if \(X \) is \(NP \)-complete and \(X \in \mathbb{P} \), then \(\mathbb{P} = \mathbb{NP} \).

Proof: Clearly, \(\mathbb{P} \subseteq \mathbb{NP} \). Let \(X \) be \(NP \)-complete and suppose \(X \in \mathbb{P} \), so that there exists some \textit{DRAM} program \(Q \) which accepts \(X \) in polynomial time. Next, let \(Y \in \mathbb{NP} \). Then, since \(Y \leq_p X \), there is some
polynomial-time computable function \(f \) such that \(y \in Y \iff f(y) \in X \). Thus, \(y \in Y \iff f(y) \in X \iff Q \) accepts \(f(y) \). Hence, there is a polynomial time acceptor for \(Y \) that, given \(y \), computes \(f(y) \) and applies \(Q \) to \(f(y) \). Therefore, \(Y \in \mathbb{P} \), and so \(\mathbb{NP} \subseteq \mathbb{P} \).

Proposition 11.5 For any sets \(X \) and \(Y \), if \(X \) is \(NP \)-complete and \(Y \in \mathbb{NP} \) and \(X \leq_p Y \), then \(Y \) is also \(NP \)-complete.

Proof: This follows from the transitivity of the relation \(\leq_p \), i.e., from the fact that the composition of two polynomial-time computable functions is polynomial-time computable.

Notation 11.10 Let \(V \) be a set of propositional variables. Then we use \(\theta \) to denote an arbitrary truth assignment to the variables of \(V \), i.e., \(\theta : V \rightarrow \{T,F\} \). Given any propositional formula \(B \) we denote by \(Var(B) \) the set of variables occurring in \(B \). If \(Var(B) \subseteq V \), then the truth assignment \(\theta \) above determines uniquely a truth value for \(B \) which we denote by \(\theta(B) \). In these terms, then, a \(CNF \) formula \(B = C_1 \land \cdots \land C_n \) is satisfiable if and only if there exists a \(\theta : Var(B) \rightarrow \{T,F\} \) such that \(\theta(C_i) = T \) for all \(1 \leq i \leq n \).

The next two results involve specializing the \(NP \)-completeness of \(SAT \) to restricted cases of the satisfiability problem which retain the property of being \(NP \)-complete. In each case beginning with a propositional formula \(B = C_1 \land \cdots \land C_n \) in conjunctive normal form, we construct a new \(CNF \) formula \(\hat{B} \) belonging to the restricted satisfiability class by replacing each clause \(C_i \) by a set of clauses \(\hat{C}_{i,1}, \ldots, \hat{C}_{i,m_i} \), whose variables are those of \(C_i \) plus some new variables \(\hat{V}_i \) that are used nowhere else and such that

1. for each truth assignment \(\theta \) to \(Var(B) \) for which \(\theta(C_i) = T \), there is an extension of \(\theta \) to a truth assignment \(\theta_i \) to \(Var(B) \cup \hat{V}_i \) such that \(\theta_i(\hat{C}_{i,j}) = T \) for all \(1 \leq j \leq m_i \); and

2. given any truth assignment \(\theta_i \) to \(Var(B) \cup \hat{V}_i \) such that \(\theta_i(\hat{C}_{i,j}) = T \) for all \(1 \leq j \leq m_i \), we have \(\theta_i \).
11.2 NP-Completeness

\[(C_1) = T.\]

It then follows that \(C_1 \land \cdots \land C_n \) is satisfiable if and only if \((\hat{C}_{1,1} \land \cdots \land \hat{C}_{1,m_1}) \land \cdots \land (\hat{C}_{n,1} \land \cdots \land \hat{C}_{n,m_n})\) is satisfiable. Finally, as in the case of the general satisfiability problem it will be easy to see that each of the restricted cases belongs to \(\text{NP} \) by guessing an assignment of truth values and then verifying that all the appropriate conditions are satisfied.

Definition 11.11 \(3SAT \) is the set of all satisfiable propositional formulas in conjunctive normal form which have exactly 3 literals per clause.

Proposition 11.6 \(3SAT \) is \(NP \)-complete.

Proof: Clearly, \(3SAT \in \text{NP} \). Let \(B = C_1 \land \cdots \land C_n \) be a propositional formula in conjunctive normal form. For each clause \(C_i \) containing \(k \) literals, where \(k \neq 3 \), we replace \(C_i \) with a set of clauses \(\hat{C}_{i,1}, \ldots, \hat{C}_{i,m_i} \), that contain new variables in addition to those of \(C_i \) such that \(C_i \) will be satisfiable by a truth assignment \(\theta \) if and only if all of \(\hat{C}_{i,1}, \ldots, \hat{C}_{i,m_i} \) are satisfiable by a truth assignment \(\theta_i \) extending \(\theta \). The proof is broken naturally into the following three cases:

Case 1:
\(C_i = w \), for some literal \(w \). Define

\[
\begin{align*}
\hat{C}_{i,1} &= (w \lor \hat{z}_1 \lor \hat{z}_2) \\
\hat{C}_{i,2} &= (w \lor \neg \hat{z}_1 \lor \hat{z}_2) \\
\hat{C}_{i,3} &= (w \lor \hat{z}_1 \lor \neg \hat{z}_2) \\
\hat{C}_{i,4} &= (w \lor \neg \hat{z}_1 \lor \neg \hat{z}_2)
\end{align*}
\]

where \(\hat{z}_1 \) and \(\hat{z}_2 \) are new propositional variables.

Case 2:

\[C_i = (w_1 \vee w_2), \text{ for literals } w_1, w_2. \text{ Define} \]
\[\hat{C}_{i,1} = (w_1 \vee w_2 \vee \hat{z}_1) \]
\[\hat{C}_{i,2} = (w_1 \vee w_2 \vee \neg \hat{z}_1) \]

where \(\hat{z}_1 \) is a new propositional variable.

Case 3:
\[C_i = (w_1 \vee w_2 \vee \ldots \vee w_k), \text{ for literals } w_1, \ldots, w_k, \text{ where } k > 3. \text{ Define} \]
\[\hat{C}_{i,1} = (w_1 \vee w_2 \vee \hat{z}_1) \]

and for \(1 < j \leq k-3 \), a clause asserting \(\hat{z}_{j-1} \rightarrow w_{j+1} \vee \hat{z}_j \)
\[\hat{C}_{i,j} = (\neg \hat{z}_{j-1} \vee w_{j+1} \vee \hat{z}_j) \]

and finally a clause asserting \(\hat{z}_{k-3} \rightarrow w_{k-1} \vee w_k \)
\[\hat{C}_{i,k-2} = (\neg \hat{z}_{k-3} \vee w_{k-1} \vee w_k) \]

In Cases 1 and 2, given a truth assignment \(\theta \) to the variables of \(C_i \) such that \(\theta(C_i) = T \), any extension \(\theta_i \) of \(\theta \) will work, since all combinations of the new variables \(\hat{z}_j \) are included. In Case 3, we extend \(\theta \) to \(\theta_i \) by assigning truth values to the variables \(\hat{z}_1, \ldots, \hat{z}_{k-3} \) in order as follows:
\[\hat{z}_1 \equiv \neg(w_1 \vee w_2) \]
and for $1 < j \leq k - 3$,

$$\hat{z}_j \equiv \neg(w_{j+1} \lor \hat{z}_{j-1})$$

Conversely, suppose that $\theta_i(\hat{C}_{i,j}) = T$ for all $1 \leq j \leq m_i$. Then, in Cases 1 and 2, since $\hat{C}_{i,j}$ is of the form $C_i \lor \hat{C}_j$, where \hat{C}_j contains only new variables, there is some j such that $\theta_i(\hat{C}_j) = F$, so $\theta_i(C_i) = T$. In Case 3, we suppose that $\theta_i(w_j) = F$ for all $1 \leq j < k$, and show by induction that $\theta_i(\hat{z}_j) = T$ for all $1 \leq j \leq k - 3$, and hence $\theta_i(w_k) = T$, so $\theta_i(C_i) = T$.

Definition 11.12 Let $(1/3)SAT$ be the set of all satisfiable propositional formulas with three literals per clause for which there is a satisfying assignment which makes *exactly one literal per clause* true.

Proposition 11.7 $(1/3)SAT$ is NP-complete.

Proof: Clearly $(1/3)SAT \in \text{NP}$. Let $B = C_1 \land \cdots \land C_n$ be a propositional formula in conjunctive normal form.

We construct a new CNF propositional formula \hat{B} by replacing each clause C_i of B by a conjunction of clauses $\hat{C}_{i,1} \land \cdots \land \hat{C}_{i,9}$. If $C_i = (x \lor y \lor z)$, where x, y, z are the three literals of C_i, then $\hat{C}_{i,1} \land \cdots \land \hat{C}_{i,9}$ contain *new* variables (not used elsewhere) $\hat{x}_a, \hat{y}_a, \hat{z}_a, \hat{x}_a y_a, \hat{x}_a z_a, \hat{y}_a z_a$ and $\hat{x}_b, \hat{y}_b, \hat{z}_b, \hat{x}_b y_b, \hat{x}_b z_b, \hat{y}_b z_b$ as follows:

$$\hat{C}_{i,1} = (x \lor \hat{x}_a \lor \hat{x}_b)$$
$$\hat{C}_{i,2} = (y \lor \hat{y}_a \lor \hat{y}_b)$$
$$\hat{C}_{i,3} = (z \lor \hat{z}_a \lor \hat{z}_b)$$
$$\hat{C}_{i,4} = (\hat{x}_a \lor \hat{y}_a \lor \hat{x}_a y_a)$$
\[\hat{C}_{i,5} = (\hat{x}_a \lor \hat{z}_a \lor \hat{x}_b \lor \hat{z}_b) \]
\[\hat{C}_{i,6} = (\hat{y}_a \lor \hat{z}_a \lor \hat{y}_b \lor \hat{z}_b) \]
\[\hat{C}_{i,7} = (\hat{x}_b \lor \hat{y}_b \lor \hat{x}_b) \]
\[\hat{C}_{i,8} = (\hat{x}_b \lor \hat{z}_b \lor \hat{x}_b) \]
\[\hat{C}_{i,9} = (\hat{y}_b \lor \hat{z}_b \lor \hat{y}_b) \]

Suppose first that \(\theta \) is a truth assignment to the variables of \(B \) such that \(\theta(C_i) = T \). We will construct a truth assignment \(\theta_i \) which extends \(\theta \) such that \(\theta_i(\hat{C}_{i,j}) = T \) for all \(1 \leq j \leq 9 \), and such that exactly one literal per clause is true. We first observe that the clauses \(\hat{C}_{i,1} \land \cdots \land \hat{C}_{i,9} \) are so constructed that the following relationships hold:

\[
\begin{align*}
x \land y &\equiv \hat{x}_y \land \hat{y}_y \\
x \land z &\equiv \hat{x}_z \land \hat{z}_z \\
y \land z &\equiv \hat{y}_z \land \hat{y}_z
\end{align*}
\]

We consider three cases:

Case 1:

\(\theta(x) = \theta(y) = \theta(z) = T \):

Then from the above equivalences the assignment \(\theta_i \) is unique, and \(\theta_i \) assigns \(T \) to

\(\hat{x}_y, \hat{y}_y, \hat{x}_z, \hat{x}_z, \hat{y}_z, \) and \(\hat{y}_z \),

and assigns \(F \) to

\(\hat{x}_a, \hat{x}_b, \hat{y}_a, \hat{y}_b, \hat{z}_a \), and \(\hat{z}_b \).
Case 2:

Exactly two of x, y, z *are assigned* T *by* θ:

Suppose for definiteness that z is the unique literal such that $\theta(z) = F$. Then, by the above equivalences, θ_i must assign T to

$$\tilde{x}y_a \text{ and } \tilde{x}y_b.$$

and assign Fto

$$\tilde{x}_a, \tilde{x}_b, \tilde{y}_a, \text{ and } \tilde{y}_b.$$

Next, there are two possible completions of the assignment θ_i. Either θ_i assigns T to

$$\tilde{z}_a, \tilde{x}z_b, \text{ and } \tilde{y}z_b$$

and Fto

$$\tilde{z}_b, \tilde{x}z_a, \text{ and } \tilde{y}z_a,$$

or θ_i assigns T to

$$\tilde{z}_b, \tilde{x}z_a, \text{ and } \tilde{y}z_a,$$

and Fto

$$\tilde{z}_a, \tilde{x}z_b, \text{ and } \tilde{y}z_b.$$

Case 3:

Exactly one of x, y, z *are assigned* T *by* θ:

Suppose for definiteness that x is the unique literal such that $\theta(x) = T$. Clearly, θ_i must assign F to \tilde{x}_a and \tilde{x}_b. There are again two possible completions of the assignment θ_i. Either θ_i assigns T to

$$\tilde{z}_a, \tilde{x}z_b, \text{ and } \tilde{y}z_b.$$
\[\hat{y}_a, \hat{x}z_a, \hat{z}_b, \text{ and } \hat{x}y_b \]

and \(F \) to

\[\hat{z}_a, \hat{x}y_a, \hat{y}z_a, \hat{y}_b, \hat{x}z_b, \text{ and } \hat{y}z_b, \]

or \(\theta_i \) assigns \(T \) to

\[\hat{y}_b, \hat{x}z_b, \hat{z}_a, \text{ and } \hat{x}y_a, \]

and \(F \) to

\[\hat{z}_b, \hat{x}y_b, \hat{y}z_b, \hat{y}_a, \hat{x}z_a, \text{ and } \hat{y}z_a. \]

The two possible assignments are summarized in the following tables:

Table 11.4: Alternative 1

	x	y	z	\(\hat{x}_a \)	\(\hat{y}_a \)	\(\hat{z}_a \)	\(\hat{x}y_a \)	\(\hat{x}z_a \)	\(\hat{y}z_a \)	\(\hat{x}_b \)	\(\hat{y}_b \)	\(\hat{z}_b \)	\(\hat{x}y_b \)	\(\hat{x}z_b \)	\(\hat{y}z_b \)		
1	T	T	T	F	F	F	F	T	T	T	F	F	F	T	T	T	
2	T	T	F	F	F	F	T	T	F	F	F	F	F	F	T	T	T
3	T	F	T	F	T	F	F	T	F	F	F	F	F	F	T	T	T
4	F	T	T	T	F	F	F	T	F	F	F	T	F	T	F	T	F
5	T	F	F	F	T	F	F	T	F	F	F	T	F	T	F	F	F
6	F	T	F	F	F	T	T	F	F	F	F	F	F	F	T	T	F
7	F	F	T	T	F	F	F	F	T	F	T	F	F	F	T	F	F

Table 11.5: Alternative 2

	x	y	z	\(\hat{x}_a \)	\(\hat{y}_a \)	\(\hat{z}_a \)	\(\hat{x}y_a \)	\(\hat{x}z_a \)	\(\hat{y}z_a \)	\(\hat{x}_b \)	\(\hat{y}_b \)	\(\hat{z}_b \)	\(\hat{x}y_b \)	\(\hat{x}z_b \)	\(\hat{y}z_b \)	
1	T	T	T	F	F	F	F	T	T	T	F	F	F	T	T	T
2	T	T	F	F	F	F	T	T	T	T	F	F	F	T	T	F
3	T	F	F	F	F	F	T	T	T	T	F	F	F	T	T	F
4	F	T	F	F	F	F	T	T	T	T	F	F	F	T	T	F

Suppose on the other hand that θ_i is a truth assignment such that $\theta_i(C_{i,j}) = T$ for all $1 \leq j \leq 9$, where exactly one literal per clause is true under the assignment θ_i. Suppose also that $\theta_i(x) = F$ and $\theta_i(y) = F$. We then show that $\theta_i(z) = T$, so that $\theta_i(C_i) = T$. Since $\theta_i(x) = F$ and $\theta_i(C_{i,1}) = T$, we have

$$\theta_i(\hat{x}_a) = T \quad \text{and} \quad \theta_i(\hat{x}_b) = F$$

or

$$\theta_i(\hat{x}_a) = F \quad \text{and} \quad \theta_i(\hat{x}_b) = T.$$

Similarly, since $\theta_i(y) = F$ and $\theta_i(C_{i,2}) = T$, we have

$$\theta_i(\hat{y}_a) = T \quad \text{and} \quad \theta_i(\hat{y}_b) = F$$

or

$$\theta_i(\hat{y}_a) = F \quad \text{and} \quad \theta_i(\hat{y}_b) = T.$$

Next, since $\theta_i(C_{i,4}) = T$ and $\theta_i(C_{i,7}) = T$, we have

$$\theta_i(\hat{x}_a) = T \quad \text{and} \quad \theta_i(\hat{y}_b) = T$$

or
\[\theta_i(x_b) = T \text{ and } \theta_i(y_a) = T. \]

In the first case from \(\theta_i(\hat{C}_{i,5}) = T \) we have

\[\theta_i(\hat{z}_a) = F \]

and from \(\theta_i(\hat{C}_{i,9}) = T \) we have

\[\theta_i(\hat{z}_b) = F. \]

Similarly, in the second case from \(\theta_i(\hat{C}_{i,8}) = T \) we have

\[\theta_i(\hat{z}_b) = F \]

and from \(\theta_i(\hat{C}_{i,6}) = T \) we have

\[\theta_i(\hat{z}_a) = F. \]

Thus, in either case we have

\[\theta_i(\hat{z}_a) = F \text{ and } \theta_i(\hat{z}_b) = F \]

so that from \(\theta_i(\hat{C}_{i,3}) = T \) we have \(\theta_i(z) = T. \)

\[\blacklozenge \] Choosing of the assignment \(\theta_i \) in Proposition 11.7 can be viewed as a game on the following graph where one must choose exactly one node of each colored triangle. Note that doing so will require choosing exactly one of \(x, y, z \).
Definition 11.13 Let \(+ (1/3)\text{SAT} \) denote the set of all satisfiable propositional formulas belonging to \((1/3)\text{SAT}\) in which there are no negated variables, i.e., all literals are single variables.

Corollary 11.8 \(+ (1/3)\text{SAT}\) is \(NP\)-complete.

Proof: Given a formula \(B = C_1 \land \cdots \land C_n \) we first add two special variables \(t \) and \(f \) and the special clause

\[
\hat{C}_t = (t \lor f \lor f).
\]

Since exactly one literal in each clause must be assigned \(T \), we see that any such assignment which makes \(\hat{C}_t \) true, must assign \(T \) to \(t \) and \(F \) to \(f \). Then for each variable \(x \in \text{Var}(B) \), we introduce a new variable \(\bar{x} \), and the clause

\[
\hat{C}_i = (\bar{x} \lor x).
\]
\[
\hat{C}_x = (x \lor \overline{x} \lor f).
\]

Thus, any appropriate assignment to \(\hat{C}_x\) which makes \(\hat{C}_x\) true, must assign the opposite truth values to \(x\) and \(\overline{x}\), so \(\overline{x} \equiv \neg x\). Then, we replace each clause \(C_i\) by the clause \(\hat{C}_i\), where \(\hat{C}_i\) is obtained by replacing every negated literal of the form \(\neg x\) with the positive literal \(\overline{x}\).
11.3 Polynomial Time Reducibility

We can now show that many other problems X are NP-complete by reducing $+(1/3)SAT$ to X and using Proposition 11.5.

Definition 11.14 Let Σ be a finite alphabet and let $V = \{x_i\}$ be a set of symbols which is disjoint from Σ. The symbols of V are called string variables. A pattern π is any non-null string over $\Sigma \cup V$. Let π be a pattern which contains n different variables. Without loss of generality we may assume that the variables of π are $x_1, ..., x_n$. Given non-empty strings $s_1, ..., s_n \in \Sigma^+$, then $\pi[x_1 \leftarrow s_1, ..., x_n \leftarrow s_n]$ is the result of simultaneously substituting s_j for all occurrences of x_j, for all $1 \leq j \leq n$. The pattern language L_π generated by π is defined by

$$L_\pi = \{ \pi[x_1 \leftarrow s_1, ..., x_n \leftarrow s_n] : s_1, ..., s_n \in \Sigma^+ \}.$$

Definition 11.15 Define $PATMEM$ as the set of all pairs $\langle \pi, t \rangle$, where π is a pattern and $t \in \Sigma^+$, such that $t \in L_\pi$.

Proposition 11.9 $PATMEM$ is NP-complete.

Proof: It is easy to see that given π and t a non-deterministic algorithm can simply guess strings $s_1, ..., s_n$ such that $\pi[x_1 \leftarrow s_1, ..., x_n \leftarrow s_n] = t$ and verify this fact in polynomial time, since all s_j must satisfy $|s_j| \leq |t|$. Thus, $PATMEM \in NP$.

To see that $PATMEM$ is NP-complete we show that $+ (1/3)SAT \leq_p PATMEM$. Let $B = C_1 \land \cdots \land C_m$
be a CNF propositional formula, where \(C_i = (w_{i,1} \lor w_{i,2} \lor w_{i,3}) \), and where \(w_{i,j} \) is a positive literal, and let \(x_1, \ldots, x_n \) be the variables of \(B \). Let \(a,b \) be two distinct symbols of \(\Sigma \). We construct a pattern \(\pi \) whose string variables are identical to the propositional variables of \(B \). The pattern \(\pi \) is defined by

\[
\pi = a \pi_1 a \pi_2 a \cdots a \pi_m a
\]

where for each \(1 \leq i \leq m \),

\[
\pi_i = w_{i,1} w_{i,2} w_{i,3}.
\]

The string \(t \) is defined by

\[
t = at_1 at_2 a \cdots at_m a
\]

where for each \(1 \leq i \leq m \),

\[
t_i = bbbbb.
\]

Suppose now that \(B \) is satisfiable by a truth assignment \(\theta \) which assigns \(T \) to exactly one literal per clause. We then construct a string assignment \(\sigma \) to the string variables of \(\pi \) as follows:

\[
\sigma(x_j) = \begin{cases}
 bbb, & \text{if } \theta(x_j) = T \\
 b, & \text{if } \theta(x_j) = F.
\end{cases}
\]

Since \(\theta \) makes exactly one literal per clause true (and two literals per clause false), \(\sigma \) assigns to \(\pi_i \) the string \(bbbbb = t_i \). Therefore, \(t \in L \pi \).

Suppose on the other hand that \(t \in L \pi \) and let \(\sigma \) be the corresponding assignment of strings from
Σ+ to the variables of π. Then, clearly each \(\pi_i \) must generate the string \(t_i = bbb \), so that for each \(i \) exactly one of \(w_{i,1}, w_{i,2}, w_{i,3} \) is assigned the string \(bb \) by \(\sigma \), and the other two are assigned the string \(b \) by \(\sigma \). We then construct a truth assignment \(\theta \) to the propositional variables of \(B \) as follows:

\[
\theta(x_j) = \begin{cases}
T, & \text{if } \sigma(x_j) = bb \\
F, & \text{if } \sigma(x_j) = b.
\end{cases}
\]

It is clear that \(\theta \) assigns \(T \) to exactly one literal per clause of \(B \).

Definition 11.16 An instance of the Knapsack Problem (denoted by \(\{s_1, \ldots, s_n; c\} \)) consists of a set of integers \(s_1, \ldots, s_n \), called sizes, and an integer \(c \), called the capacity. An instance of the Knapsack Problem is called solvable if and only if there is some set of indices \(J \subseteq \{1, \ldots, n\} \) such that \(c = \sum_{j \in J} s_j \). We define \(KNAPSACK \) as the set of all solvable instances of the Knapsack Problem.

Proposition 11.10 \(KNAPSACK \) is \(NP \)-complete.

Proof: It is easy to see that \(KNAPSACK \in \text{\#P} \), since a non-deterministic algorithm can, given an instance \(\{s_1, \ldots, s_n; c\} \),

1. guess a subset \(J \subseteq \{1, \ldots, n\} \), and
2. verify that \(c = \sum_{j \in J} s_j \).

We show that \(+ (1/3)SAT \leq_p KNAPSACK \). Let \(B = C_1 \land \cdots \land C_m \) be a CNF propositional formula,
where \(C_i = (w_{i,1} \lor w_{i,2} \lor w_{i,3}) \), and where \(w_{i,j} \) is a positive literal, and let \(x_1, \ldots, x_n \) be the variables of \(B \). We define an instance \(\langle s_1, \ldots, s_n; c \rangle \) of the Knapsack Problem as follows:

For each variable \(x_j \) we define a weight

\[
s_j = \sum_{i \in I_j} 4^i,
\]

where \(I_j = \{ i \mid x_j \text{ occurs in } C_i \} \). The knapsack capacity is defined by

\[
c = \sum_{i=1}^{m} 4^i.
\]

Suppose \(\langle s_1, \ldots, s_n; c \rangle \in \text{KNAPSACK} \). Let \(J \) be such that \(c = \sum_{j \in J} s_j \). We define a truth assignment \(\theta \) to \(x_1, \ldots, x_n \) as follows:

\[
\theta(x_j) = \begin{cases}
\text{T}, & \text{if } j \in J \\
\text{F}, & \text{otherwise.}
\end{cases}
\]

We first observe that since there are only three literals per clause each "bit" \(4^i \) in the capacity \(c \) must be generated by some size \(s_j \) such that \(i \in I_j \). Further, since the coefficient of \(4^i \) is 1 (and not 2 or 3), the assignment \(\theta \) must assign \(\text{T} \) to exactly one literal of each clause \(C_i \). Thus, \(B \in (1/3)\text{SAT} \).

Suppose on the other hand that \(B \in (1/3)\text{SAT} \). Define

\[
J = \{ j \mid \theta(x_j) = \text{T} \}.
\]
Then it is easy to see that $\sum_{j \in J} s_j = \sum_{i=1}^{m} 4^i = c$. Thus, $\langle s_1, \ldots, s_n; c \rangle \in \text{KNAPSACK}$.
11.4 Finite Automata (Review)

In this section we review the majors results for finite state machines. From Definition 2.1 we see that a deterministic finite automaton (DFA) M consists of $\langle \Sigma, Q, \delta, q_0, F \rangle$, where Σ is the input alphabet, Q is the finite set of states, q_0 is the start state, F is the set of final states, and $\delta : Q \times \Sigma \rightarrow Q$ is the state transition function.

♠ Observe that for a DFA the state transition function δ must be defined for all inputs and all states.

We depict the internal state transition behavior of M by means of a labelled directed graph G_M as follows: The nodes of G_M are the states of M, and there is a directed edge from q_1 to q_2 labelled a whenever $\delta(q_1, a) = q_2$, and is depicted as:

Figure 11.4: State Transition

![State Transition](image)

We also depict the initial state q_0 and final states $q_f \in F$ as:

Figure 11.5: Initial and Final States

![Initial and Final States](image)
Definition 11.17 For any DFA M the language L_M accepted by M is the set of all input strings $x = a_1 \ldots a_n$ such that there is a path from the initial state q_0 to some final state $q_f \in F$ with label $a_1 \ldots a_n$, i.e.,

![Accepting Computation Path](image)

Definition 11.18 A non-deterministic finite state automaton (NFA) M consists of $\langle \Sigma, Q, \delta, I, F \rangle$, where Σ is the input alphabet, Q is the finite set of states, $I \subseteq Q$ is the set of start states, F is the set of final states, and $\delta : Q \times (\Sigma \cup \{\varepsilon\}) \rightarrow 2^Q$ is the (non-deterministic) state transition function.

♣ Observe that we allow ε-transitions for NFA's.

Definition 11.19 For any NFA M the language L_M accepted by M is the set of all input strings $x = a_1 \ldots a_n$ such that there is a path from some initial state $q_i \in I$ to some final state $q_f \in F$ with label $a_1 \ldots a_n$.

Theorem 11.11 The class of languages accepted by NFA's is the same as the class of languages accepted by DFA's.
Proof: (⇐): This is immediate since given a DFA \(M = \langle \Sigma, Q, \delta, q_0, F \rangle \), we construct an equivalent NFA \(\hat{M} = \langle \Sigma, \hat{Q}, \hat{\delta}, I, F \rangle \), where \(I = \{ q_0 \} \) and \(\hat{\delta}(q, a) = \{ \delta(q, a) \} \).

(⇒): Let \(M = \langle \Sigma, Q, \delta, I, F \rangle \) be an NFA. We construct an equivalent DFA \(\hat{M} = \langle \Sigma, \hat{Q}, \hat{\delta}, q_0, \hat{F} \rangle \) as follows:

\[
\hat{Q} = 2^Q
\]
\[
\hat{q}_0 = I
\]
\[
\hat{F} = \{ X \subseteq Q : X \cap F \neq \emptyset \}
\]
\[
\hat{\delta}(X, a) = \bigcup_{q \in X} \delta(q, a)
\]

Thus, the states of \(\hat{M} \) are subsets of states of \(M \). Then one completes the proof by showing that \(\hat{M} \) on input \(x \) enters state \(X \subseteq 2^Q \) if and only if \(M \) on input \(x \) could enter (via the right choices) each state \(q \in X \).

-if the NFA \(M \) has \(n \) states, then the equivalent DFA \(\hat{M} \) has \(2^n \) states.

Proposition 11.12 Every regular language is accepted by some finite state automaton.

Proof: Let \(r \) be a regular expression. Then, an NFA with \(\epsilon \) transitions \(M \) such that \(L_M = L_r \) is defined by induction on the length of \(r \) as follows:

- **Induction Basis:**
 - **Case 1:** \(r = \emptyset \):
Case 2: \(r = a \), where \(a \in \Sigma \cup \{ \epsilon \} \):

Induction Step:

Let

\[
M_1 = \langle \Sigma, Q_1, \delta_1, I_1, F_1 \rangle \\
M_2 = \langle \Sigma, Q_2, \delta_2, I_2, F_2 \rangle
\]

be **NFA**'s such that \(L_{M_1} = L_{r_1} \) and \(L_{M_2} = L_{r_2} \).

Case 1: \(r = r_1 \cup r_2 \):

\[\text{Figure 11.9: NFA for } r_1 \cup r_2\]
Case 2: $r = r_1 \cdot r_2$

Figure 11.10: NFA for $r_1 \cdot r_2$
Case 3: $r = r_1^*$:

Figure 11.11: NFA for r_1^*

If the length of the regular expression r is n (excluding parentheses), then the number of states of the equivalent NFA is $2n$.

Proposition 11.13 For every NFA M there is some regular expression r such that $L_M = L_r$.

Proof: Let $M = \langle \Sigma, Q, \delta, I, F \rangle$. The main idea is to compute the transitive closure of the (labelled) edge relation given by δ in G_M. More precisely, we construct via the standard transitive closure algorithm a regular expression r that describes the set of all labels of accepting paths in G_M. Suppose $Q = \{q_1, \ldots, q_n\}$. Let r_{ij}^0 be a regular expression which denotes the finite set of labels from q_i to q_j in G_M. Since every finite set of strings is a regular language, such a regular expression clearly exists. Consider the following algorithm from computing the transitive closure:

for $1 \leq i \leq n$ do

\begin{align*}
r_{ii}^0 &\leftarrow r_{ii}^0 \cup \epsilon \\
\end{align*}

endfor

for $1 \leq k \leq n$ do
for 1 \leq i, j \leq n do

\[r_{ij} \leftarrow r_{ij}^{k-1} \cup r_{ik}^{k-1} \cdot (r_{kk}^{k-1})^* \cdot r_{kj}^{k-1} \]

endfor

endfor

The required regular expression \(r \) is given by

\[r = \bigcup_{q_i \in I, q_j \in F} r_{ij}^{n}. \]

The correctness of the regular expression can be shown by proving by induction on \(k \) for 1 \(\leq k \leq n \) that \(r_{ij}^k \) describes the set of all labels of paths from \(q_i \) to \(q_j \) via the intermediate nodes \(\{q_1, \ldots, q_k\} \).

Figure 11.12: Paths from \(q_i \) to \(q_j \) via \(\{q_1, \ldots, q_k\} \)
11.4 Finite Automata (Review)

Theorem 11.14 The class of regular languages is precisely the class of languages accepted by finite state automata.

Proposition 11.15 The class of regular languages is closed under complementation.

Proof: Let L be a regular language and let $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ be a DFA such that $L_M = L$. Define

$$\tilde{M} = \langle \Sigma, Q, \delta, q_0, Q - F \rangle.$$

Then, $x \in L \tilde{M} \iff x \not\in L_M$. Thus, $L \tilde{M} = \Sigma^* - L = \overline{L}$, so \overline{L} is a regular language.

Theorem 11.16 (Pumping Lemma for Regular Languages) For every regular language L there is a positive integer p (called the pumping length) such that for all $s \in L$ if $|s| \geq p$, then there exist strings x, y, z such that $s = x \cdot y \cdot z$ and

1. $|y| > 0$,
2. $|xy| \leq p$, and
3. for all $i \geq 0$, $xy^iz \in L$.

Proof: Suppose L is a regular language and that $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ is a DFA such that $L_M = L$. Choose $p = \#Q$. Let $s \in L$ be such that $|s| \geq p$. Thus, $s = a_1 \ldots a_n$, where $n \geq p$. Consider the accepting path for s:

![Accepting Computation Path](http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node45.html (8 of 10) [12/23/2006 12:05:45 PM])

Since there are $n + 1 > p$ states in this accepting path, there must exist two (least) indices $j < k$ such that $q_j = q_k$.

Thus, overlaying \(q_j \) and \(q_k \) to form a loop we have:

Figure 11.14: Accepting Computation Path with Loop

Choose \(x = a_1 \ldots a_j \) (the part before the loop), \(y = a_{j+1} \ldots a_k \) (the loop itself), and \(z = a_{k+1} \ldots a_n \) (the part after the loop). Since \(j < k \), we have \(|y| > 0\), and since we chose the least pair \(j < k \) such that \(q_j = q_k \), we have \(|xy| \leq p\).

Finally, the path consisting of the part from \(q_0 \) to \(q_j \), followed by any number of times (including 0) around the loop, followed by the part from \(q_k \) to \(q_n \) is an accepting path, i.e., \(xy^iz \in L \) for every \(i \geq 0 \).

Theorem 11.17 For every regular language \(L \) there exists a positive integer \(p \) such that \(L \neq \emptyset \) if and only if there exists \(s \in L \) such that \(|s| < p\).

Proof: Let \(L \) be a regular language and let \(p \) be the pumping length as given by the Pumping Lemma above.

- **Case (\(\iff \)):**
 Clearly, if \(\exists s \in L \) such that \(|s| < p\), then \(L \neq \emptyset \).

- **Case (\(\implies \)):**
 Suppose \(L \neq \emptyset \), and let \(s \in L \). If \(|s| \geq p\), then by the Pumping Lemma for regular languages, \(s \) can be written as \(s = xyz \) where \(|y| > 0\), so the string \(s_1 = xz \in L \) and \(|s_1| < |s|\). By repeating this pruning process (if \(|s_1| \geq p\)) we must eventually obtain a string \(s_1 \in L \) such that \(|s_1| < p\).
11.5 PSPACE Completeness

Definition 11.20 A set X is called PSPACE-complete if and only if it is complete for the class PSPACE with respect to \leq_p, i.e., $X \in \text{PSPACE}$ and $Y \leq_p X$ for all $Y \in \text{PSPACE}$.

Definition 11.21 $\text{RE} \neq \emptyset$ is the set of all regular expressions r over Σ such that $L_r \neq \Sigma^*$, i.e., $L_r \neq \emptyset$.

Theorem 11.18 $\text{RE} \neq \emptyset$ is PSPACE-complete.

The theorem follows from the following two propositions.

Proposition 11.19 $\text{RE} \neq \emptyset \in \text{PSPACE}$.

Proof: Let r be a regular expression of size n, and let $M = \left\langle \Sigma, Q, \delta, I, F \right\rangle$ be an NFA with $2n$ states such that $L_M = L_r$. Let $\hat{M} = \left\langle \Sigma, \hat{Q}, \hat{\delta}, \hat{q}_0, \hat{F} \right\rangle$ be a DFA with 2^{2n} states such that $L \hat{M} = \overline{L_M}$ (i.e., the complement of L_M). Then, using Theorem 11.17, we have

$$L_r \neq \Sigma^* \iff L \hat{M} \neq \emptyset \iff \exists z \in L \hat{M} \ |z| \leq 2^{2n}.$$

We give an algorithm that, when implemented on a DRAM, operates in $O(n^2)$ space and that decides whether or not $L \hat{M} \neq \emptyset$ by checking all paths in $G \hat{M}$ of length $\leq 2^{2n}$ to see if there is an accepting path. Actually, the algorithm cannot store the graph $G \hat{M}$ since it is of size exponential in n. Therefore, the algorithm will work with G_M instead. Let $Q = \{q_1, \ldots, q_{2n}\}$. The states of \hat{M} will be coded as binary strings of length $2n$ in such a way that for all $X \in \hat{Q}$

$$\text{bit } i \text{ of state } X \text{ is } 1 \iff q_i \in X.$$
By Theorem 11.11,

\[X \in \widehat{F} \iff (q \in X \implies q \notin F). \]

The algorithm first constructs the NFA \(M \) and stores \(G_M \), which requires \(O(n^2) \) space, and then executes the following program:

```plaintext
for \( X \in \widehat{F} \) do
  if Access(\( I, X, 2n \)) then
    output(true)
  endif
endfor
output(false)
```

The recursive subroutine \(Access(x_1, x_2, m) \) is defined by:

```plaintext
input(\( X_1, X_2, Z \))
if \( Z = 0 \) then
  if \( X_1 = X_2 \) or \( \exists a \in \Sigma \ X_2 = \hat{\delta}(X_1, a) \) then
    return(true)
  else
    return(false)
  endif
endif
for \( 0 \leq X \leq 2^{2n} - 1 \) do
```

11.5 PSPACE Completeness

if Access($X_1, X, Z - 1$) and Access($X, X_2, Z - 1$) then
 return(true)
endif
endfor
return(false)

In the subroutine Access checking whether or not $X_2 = \hat{\delta}(X_1, a)$ involves checking whether or not $\forall q_2 \in X_2 \exists q_1 \in X_1$ $q_2 \in \delta(q_1, a)$, which can easily be done by consulting G_M. Since the path length examined doubles with each recursive call (beginning at the lowest level), it is clear that all paths of length $\leq 2^{2n}$ are examined. Each recursive call to Access(x_1, x_2, m) requires $O(n)$ space overhead for stacking the arguments x_1, x_2, m ($2n$ space for each of x_1 and x_2, and $\log_2 2n$ for m). The maximum depth of recursion is $2n$, so the total space used by the algorithm is $O(n^2)$.

Figure 11.15: Space Usage for Recursive Algorithm Access

<table>
<thead>
<tr>
<th>G_M</th>
<th>$I, X_f, 2n$</th>
<th>$I, X, 2n - 1$</th>
<th>\cdots</th>
<th>$I, X_1, 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>level 1</td>
<td>level 2</td>
<td>\cdots</td>
<td>level 2n</td>
</tr>
<tr>
<td></td>
<td>$X, X_f, 2n - 1$</td>
<td>\cdots</td>
<td></td>
<td>$X, X_2, 1$</td>
</tr>
</tbody>
</table>

In order to simplify the regular expression constructed in Proposition 11.20 below, we observe that for any DRAM program P over Σ_k which uses m registers (with one input instruction) we can construct a DRAM program \hat{P} over $\Sigma_{k+1} = \Sigma_k \cup \{,\}$ that uses exactly one register and such that $L \hat{P} = L_P$ and for some constant c, $\text{DRAMspace} \hat{P}(x) \leq c \text{DRAMspace}_P(x)$ for all x. The program \hat{P} maintains in its one register a string of the form
11.5 PSPACE Completeness

\[
z_1, \ldots, z_m, \text{ where } z_1, \ldots, z_m \text{ are the current contents of registers } R_1, \ldots, R_m \text{ of } P. \text{ It simulates each instruction of } P \text{ by:}
\]

1. exposing the right or left end (depending on the type of instruction) of the register mentioned in the instruction (if any);
2. executing that instruction;
3. returning the contents of its one register to the canonical form which begins with the contents of \(R_1 \) at the left.

Proposition 11.20 For any \(X \in \text{PSPACE} \), \(X \leq_p \overline{\text{RE}} \neq \emptyset \).

Proof: Let \(X \in \text{PSPACE} \). Then there is some \(\text{DRAM} \) program \(P \) over \(\Sigma_k \) which uses one register and has one input statement, and there is some polynomial function \(p \) such that \(x \in X \iff \text{DRAMspace}_P(x) \leq p(|x|) \).

We will construct an alphabet \(\Delta \) and for each \(x \) a regular expression \(r_x \) over \(\Delta \) (in polynomial time) such that

\[
x \in X \iff r_x \in \overline{\text{RE}} \neq \emptyset \\
\iff L_{r_x} \neq \emptyset.
\]

In other words,

\[
x \notin X \iff L_{r_x} = \Delta^*
\]

The construction of \(r_x \) will be similar to the construction of \(B_x \) in Theorem 11.3 in that we will use regular expressions to describe computations. More precisely, the regular expression over \(\Delta \) which we construct will describe non-accepting computations, i.e., if \(x \notin X \), then every string in \(\Delta^* \) represents a non-accepting computation.

As in Theorem 11.3 we let \(x = a_1 \cdots a_n \), so \(|x| = n\), and let \(m \) be the number of lines of \(P \). We use \(s_j \) to denote the symbol (if any) mentioned in line \(j \) of \(P \), and \(g_j \) to denote the goto part (if any) of line \(j \). We will represent the
register contents by a left justified string of length exactly $p(n)$ over Σ_{k+1}, where the $k+1$st symbol represents a blank (depicted by \square). We will encode line numbers by using finitely many special additional symbols $\Gamma = \{b_1, ..., b_m\}$ not belonging to Σ_{k+1}. The state of P at any point in time will be represented by the string of length $p(n) + 1$ of the form

$$b_j \cdot z$$

where j is the current line number of P and z represents the current contents of the (only) register of P. Finally, a computation string will be represented by the string

$$y_0 \cdot \ldots \cdot y_t \cdot b_m$$

where t is the number of steps of P on input x, and y_i is the representation of the state of P at the ith step.

The regular expression $r_x = r_1 \cup r_2 \cup r_3 \cup r_4 \cup r_5$, where

1. r_1 describes all strings which don't represent accepting computations because they are syntactically ill-formed;
2. r_2 describes all computation strings which don't start correctly;
3. r_3 describes all computation strings which don't end correctly;
4. r_4 describes all computation strings in which some line number does not follow correctly from the previous state;
5. r_5 describes all computation strings in which the register contents does not follow correctly from the previous state.

We will use the following abbreviations:

- if W is a finite set of symbols $\{w_1, ..., w_s\}$, then we use W to stand for the regular expression $w_1 \cup \ldots \cup w_s$.
- if r is a regular expression, then we use r^i for the concatenation of r with itself i times, where $r^0 = \epsilon$.

Define $\Delta = \Sigma_{k+1} \cup \Gamma$.

1.
$r_1 = r_{1,1} \cup \ldots \cup r_{1,6}$, where

\begin{align*}
 r_{1,1} &= \sum_{k+1}^{*} \sum_{k+1}^{*} \quad \text{(no line number)} \\
 r_{1,2} &= \sum_{k+1}^{*} \cdot \Delta^* \cdot \sum_{k+1}^{*} \quad \text{(only 1 line number)} \\
 r_{1,3} &= \sum_{k+1}^{*} \cdot \Delta^* \quad \text{(line number not first)} \\
 r_{1,4} &= \Delta^* \cdot \sum_{k+1}^{*} \quad \text{(line number not last)} \\
 r_{1,5} &= \Delta^* \cdot \Gamma \cdot \sum_{k+1}^{p(n)+1} \cdot \Delta^* \quad \text{(contents too long)} \\
 r_{1,6} &= r_{1,6,0} \cup \ldots \cup r_{1,6,p(n)-1} \quad \text{(contents too short)}
\end{align*}

where for all $0 \leq j \leq p(n) - 1$

$$r_{1,6,j} = \Delta^* \cdot \Gamma \cdot \sum_{k+1}^{j} \cdot \Delta^*.$$

2.

$r_2 = r_{2,1} \cup r_{2,2}$, where

$$r_{2,1} = (\Gamma - b_1) \cdot \Delta^* \quad \text{(wrong initial line number)}$$

$$r_{2,2} = b_1 \cdot \sum_{k+1}^{*} \cdot \sum_{k}^{*} \cdot \Delta^* \quad \text{(initial contents not blank)}$$

3.

$r_3 = \Delta^* \cdot (\Gamma - b_m)$

4.

$r_4 = r_{4,1} \cup \ldots \cup r_{4,m}$, where for all $1 \leq j < m$:

- if j is not a conditional jump instruction

$$r_{4,j} = \Delta^* \cdot b_j \cdot \sum_{k+1}^{*} \cdot (\Gamma - b_{j+1}) \cdot \Delta^*$$
if j is a conditional jump statement $r_4, j = r_4, j, 1 \cup r_4, j, 2$, where

\[
r_4, j, 1 = \Delta^* \cdot b_j \cdot s_j \cdot \Sigma_{k+1}^\ast \cdot (\Gamma - b_{gj}) \cdot \Delta^*
\]

\[
r_4, j, 2 = \Delta^* \cdot b_j \cdot (\Sigma_{k+1} - s_j) \cdot \Sigma_{k+1}^\ast \cdot (\Gamma - b_{j+1}) \cdot \Delta^*
\]

5.

$r_5 = r_5, 1 \cup \cdots \cup r_5, m$, where for each $1 \leq j \leq m$:

- if j is the input instruction $r_5, j = r_5, j, 1 \cup \cdots \cup r_5, j, n + 1$, where

 for each $1 \leq i \leq n$

 \[
r_5, j, i = b_1 \cdot \Sigma_{k+1}^\ast \cdot b_2 \cdot \Sigma_{k+1}^{i-1} \cdot (\Sigma_{k+1} - a_i) \cdot \Delta^*
\]

 and

 \[
r_5, j, n + 1 = b_1 \cdot \Sigma_{k+1}^\ast \cdot b_2 \cdot \Sigma_{k+1}^n \cdot \Sigma_{k+1}^\ast \cdot \Sigma_k \cdot \Delta^*
\]

- if j is a conditional jump instruction $r_5, j = \bigcup_{a \in \Sigma_{k+1}} r_5, j, a$, where

 \[
r_5, j, a = \Delta^* \cdot b_j \cdot \Sigma_{k+1}^\ast \cdot a \cdot \Delta^p(n) \cdot (\Sigma_{k+1} - a) \cdot \Delta^*
\]

- if j is a left shift instruction $r_5, j = r_5, j, 0 \cup \bigcup_{a \in \Sigma_{k+1}} r_5, j, a$, where

 \[
r_5, j, a = \Delta^* \cdot b_j \cdot \Sigma_{k+1}^\ast \cdot a \cdot \Delta^p(n-1) \cdot (\Sigma_{k+1} - a) \cdot \Delta^*
\]

 \[
r_5, j, 0 = \Delta^* \cdot b_j \cdot \Delta^{2p(n)} \cdot \Sigma_k \cdot \Delta^*
\]

- if j is a successor instruction $r_5, j = r_5, j, 0 \cup r_5, j, 1 \cup \bigcup_{a \in \Sigma_k} r_5, j, a$, where

 \[
r_5, j, a = \Delta^* \cdot b_j \cdot \Sigma_{k+1}^\ast \cdot a \cdot \Delta^p(n) \cdot (\Sigma_{k+1} - a) \cdot \Delta^*
\]

 \[
r_5, j, 0 = \Delta^* \cdot b_j \cdot \Sigma_{k+1}^\ast \cdot \Delta \cdot \Delta^p(n) \cdot \Sigma_k \cdot \Delta^*
\]
\[r_{5,j,1} = \Delta^* \cdot b_j \cdot \Sigma_{k+1}^* \cdot \Sigma_k \cdot \bigcup \cdot \Delta^{p(n)} \cdot (\Sigma_{k+1}^* - s_j) \cdot \Delta^* \]

We observe that the alphabet over which the regular expression is defined depends on the program \(P \). We can use a fixed alphabet \(\Sigma = \{0, 1\} \) by coding the \(i \)th symbol of \(\Delta \) by the string \(1 \cdot 0^i \).

Theorem 11.21 \(\text{PSPACE} = \text{NSPACE} \).

Proof: Since \(\overline{\text{RE}} \neq \emptyset \in \text{PSPACE} \), it suffices to show for every \(X \in \text{NSPACE} \) that \(X \leq_p \overline{\text{RE}} \neq \emptyset \). As in Proposition 11.20 we may assume that \(X = L_P \) for some NRAM program \(P \) over \(\Sigma_k \) with one register and one input statement. Thus, we need only show how to modify the construction of Proposition 11.20 to handle \text{njp} instructions. If line \(j \) is a \text{njp} instruction (with goto parts \(g_j^1 \) and \(g_j^2 \)), then \(r_{5,j} \) is the same as for conditional jump instructions, and

\[r_{4,j} = \Delta^* \cdot b_j \cdot \Sigma_{k+1}^* \cdot (\Gamma - \{b_{g_j^1}, b_{g_j^2}\}) \cdot \Delta^* \]

Theorem 11.21 is usually obtained as a corollary to the following Theorem (known as Savitch's Theorem).

Theorem 11.22 Let \(S \) be a function satisfying the following conditions:

1. \(S(n) \geq \log_2 n \);
2. for some DRAM program \(P \), \(S(|x|) = DRAMspace_P(x) \) for all \(x \).

Then, for any NRAM program \(P \) such that \(NRAMspace_P(x) \leq S(|x|) \) there is an equivalent DRAM program \(\hat{P} \) such that \(L_P = L_{\hat{P}} \) and there is a constant \(c_1 \) such that \(DRAMspace_{\hat{P}}(x) \leq c_1 (S(|x|))^2 \).

Proof: As usual we may assume that \(P \) is an NRAM program over \(\Sigma_k \) with one register and one input statement. Let \(P \) have \(m \) lines. Let \(x \) be some input to \(P \) with \(|x| = n \). As in Theorem 11.20 we represent a state of \(P \) by a string of length \(S(n) + 1 \) of the form \(b_j \cdot z \), where \(b_j \) is a special symbol representing line \(j \) (\(\Gamma = \{b_1, \ldots, b_m\} \)) and \(z \) is a
string of length $S(n)$ that represents the contents of P’s one register. We construct a state transition graph G_P for the computation of P on input x as follows. The nodes of G_P are the strings belonging to $\Gamma \cdot \Sigma_k^{S(n)}$. G_P will be similar to the state transition graph of an NFA except that the edges will not be labelled with input symbols, but rather an edge from one state to another will mean that it is possible to go from the first state to the second by executing the current instruction of P with the current register contents.

Then, there is an edge from $b_j \cdot z_1$ to $b_i \cdot z_2$ if and only if

1. line j is an input instruction, $z_1 = \epsilon$, $i = j + 1$, and $z_2 = x$;
2. line j is a conditional jump instruction, z_1 begins with s_j, $i = g_j$, and $z_2 = z_1$.
3. line j is a conditional jump instruction, z_1 does not begin with s_j, $i = j + 1$, and $z_2 = z_1$.
4. line j is a non-deterministic jump instruction, $z_1 = z_2$, and either $i = g_j^1$ or $i = g_j^2$;
5. line j is a successor instruction, $i = j + 1$ and $z_2 = z_1 \cdot s_j$;
6. line j is a left shift instruction, $i = j + 1$, and $z_1 = a \cdot z_2$ for some $a \in \Sigma_k$.

Then initial state of G_M is $b_1 \cdot \epsilon$ and the set of final states is

$$F = \bigcup_{i=0}^{S(n)} b_m \cdot \Sigma_k^i.$$

The rest of the proof proceeds as in the proof of Theorem 11.20. If there is an accepting computation for P on input x, then there must be some path from the initial state to some final state of length $\leq m \cdot k^{S(n)}$, since otherwise there would be a loop in the non-deterministic computation which could be eliminated. We can rewrite $m \cdot k^{S(n)} \approx 2^c \cdot S(n)$ for some constant c. We then use the same strategy as in Theorem 11.20 to search by divide-and-conquer the graph G_P for such an accepting computation path, i.e., we execute the following program.

for $X \in F$ do
if $Access(b_1 \cdot \epsilon, X, c \cdot S(n))$ then

 output(true)

endif

endfor

output(false)

The recursive subroutine $Access(x_1, x_2, m)$ is defined by:

input(X_1, X_2, Z)

if $Z = 0$ then

 if $X_1 = X_2$ or $(X_1, X_2) \in G_p$ then

 return(true)

 else

 return(false)

 endif

endif

endif

for $1 \leq X \leq 2^c \cdot S(n)$ do

 if $Access(X_1, X, Z - 1)$ and $Access(X, X_2, Z - 1)$ then

 return(true)

 endif

endfor

return(false)

The algorithm does not store G_p, but rather stores a copy of the program P, that it uses to decide whether of not $(X_1, X_2) \in G_p$, for any states X_1 and X_2. This can be done without using very much space. Again, as in the proof of Theorem 11.20 an analysis of the space required to store the recursive subroutine calls to $Access$ shows that the
total space used is bounded by $c_1 (S(n))^2$, for some constant c_1.
12. Formal Languages

- 12.1 Grammars
- 12.2 Chomsky Classification of Languages
- 12.3 Context Sensitive Languages
- 12.4 Linear Bounded Automata
- 12.5 Context Free Languages
- 12.6 Push Down Automata
- 12.7 Regular Languages
12.1 Grammars

Example 12.1 (English fragment)

\[
\begin{align*}
\langle \text{sentence} \rangle &= \langle \text{noun phrase} \rangle \langle \text{verb phrase} \rangle \langle \text{noun phrase} \rangle \\
\langle \text{noun phrase} \rangle &= \langle \text{noun} \rangle \mid \langle \text{adjective} \rangle \langle \text{noun phrase} \rangle \\
\langle \text{verb phrase} \rangle &= \langle \text{verb} \rangle \mid \langle \text{adverb} \rangle \langle \text{verb phrase} \rangle \\
\langle \text{adjective} \rangle &= \text{big} \mid \text{small} \mid \text{black} \mid \text{white} \mid \ldots \\
\langle \text{adverb} \rangle &= \text{slowly} \mid \text{quickly} \mid \text{secretly} \mid \ldots \\
\langle \text{noun} \rangle &= \text{boy} \mid \text{dog} \mid \text{cat} \mid \text{girl} \mid \ldots \\
\langle \text{verb} \rangle &= \text{likes} \mid \text{hates} \mid \text{hits} \mid \text{desires} \mid \ldots
\end{align*}
\]

This fragment generates (or derives) the following:

- big black dog hits small boy
- small cat secretly desires big black cat

But it also generates:

- big small \(\langle \text{noun phrase} \rangle \langle \text{verb} \rangle \) black cat

The former are called *sentences* and the latter are called *sentential forms*.

Definition 12.1 A grammar \(G \) is denoted by \(\langle \Sigma, V, R, S \rangle \), where

- \(\Sigma \) is a finite set of symbols called *terminals*;
12.1 Grammars

- \(V \) is a finite set of symbols disjoint from \(\sum \) called variables (or non-terminals);
- \(R \) is a finite set of productions (or rewrite rules) of the form \(x \rightarrow y \), where \(x, y \in (\sum \cup V)^* \) and \(x \neq \epsilon \);
- \(S \in V \) is a special symbol called the start symbol (or axiom).

Definition 12.2 If \(x \rightarrow y \) is a production of the grammar \(G \) and \(w, z \in (\sum \cup V)^* \), then we say that \(wxz \) directly derives \(wyz \) in \(G \) (written \(wxz \Rightarrow wyz \)). Also, we say that \(x_1 \) derives \(x_n \) in \(G \) (written \(x_1 \Rightarrow^* x_n \)) if and only if there exist strings \(x_2, \ldots, x_{n-1} \in (\sum \cup V)^* \) such that \(x_1 \Rightarrow x_2, x_2 \Rightarrow x_3, \ldots, x_{n-1} \Rightarrow x_n \).

Definition 12.3 The language generated by the grammar \(G \) is defined by \(L_G = \{ x \in \sum^* : S \Rightarrow^* x \} \).

Proposition 12.1 For every grammar \(G \), \(x \Rightarrow y \) is a primitive recursive predicate.

Proof: Let \(G = \langle \sum, V, R, S \rangle \), where \(R = \{ r_1, \ldots, r_n \} \), and \(r_i = x_i \rightarrow y_i \) for each \(1 \leq i \leq n \). Then,

\[
x \Rightarrow y \equiv D_{r_1}(x, y) \lor \cdots \lor D_{r_n}(x, y),
\]

where

\[
D_{r_i} \equiv \exists u \leq x \ \exists v \leq x \quad x = u \cdot x_i \cdot v \quad \land \quad y = u \cdot y_i \cdot v.
\]

Theorem 12.2 For every grammar \(G \) the language \(L_G \) is recursively enumerable.

Proof: We first code derivations \(x_1 \Rightarrow x_2, x_2 \Rightarrow x_3, \ldots, x_{n-1} \Rightarrow x_n \) by \(\langle x_1, \ldots, x_n \rangle \). Then, the partial
recursive function \(\Phi \) such that \(\text{dom} \ \Phi = L_G \) is given by

\[
\Phi(x) = \min z(x_1, \ldots, x_n) \quad \text{and} \quad x_1 = S \quad \text{and} \quad x_n = x
\]

and \(\forall m < n \quad x_m \Rightarrow x_{m+1} \)

Theorem 12.3 For every *NRAM* program \(P \) there is a grammar \(G \) such that \(L_P = L_G \).

Proof: We first observe that since the grammar \(G \) must output every string that \(P \) accepts on input, derivations in \(G \) will correspond to the reverse of accepting computations. Thus, it will not matter whether or not \(P \) is deterministic, since even if it were certain instructions result in a loss of information (i.e., are not reversible). For example, a left shift instruction loses the information regarding the leftmost symbol, so that in reversing such an instruction one must guess which symbol was deleted in the actual instruction execution. We will assume that \(P \) is an *NRAM* program over \(\Sigma_k \) with exactly one register and one input instruction. Suppose \(P \) has \(m \) lines. As usual we use \(s_j, g_j, g_j^1, \) and \(g_j^2 \) to denote the specific items mentioned in the instruction at line \(j \) of the program \(P \). The current global state of program \(P \) during its execution will be represented by the string \(\overrightarrow{b} \cdot z \cdot \overrightarrow{b} \), where \(j \) is the current line number and \(z \) is the current register contents.

Then, the grammar \(G \) for \(P \) is defined as follows:

\[
G = \left\{ \Sigma_k, \Gamma, R, S \right\},
\]

where \(\Gamma = \{b_1, \ldots, b_m\} \cup \{ \overrightarrow{b_1}, \ldots, \overrightarrow{b_m} \} \cup \{ \overrightarrow{b_1}, \ldots, \overrightarrow{b_m} \} \cup \{S, \overrightarrow{b}, \overrightarrow{b}\} \), and the set \(R \) of productions is defined to contain for each line \(j \) of \(P \) the following rules:

1. if \(j \) is a conditional jump instruction, then

\[
b_{g_j} \cdot s_j \rightarrow b_j \cdot s_j
\]
12.1 Grammars

\[b_{j+1} \cdot a \rightarrow b_j \cdot a \quad \text{for all } a \in \Sigma_k - \{s_j\} \]

2. if \(j \) is a non-deterministic jump instruction, then

\[b_{g_j^1} \rightarrow b_j \]

\[b_{g_j^2} \rightarrow b_j \]

3. if \(j \) is a left shift instruction, then

\[b_{j+1} \rightarrow b_j \cdot a \quad \text{for all } a \in \Sigma_k \]

4. if \(j \) is a successor instruction, then

\[b_{j+1} \rightarrow \overrightarrow{b_j} \]

\[\overrightarrow{b_j} \cdot a \cdot c \rightarrow a \cdot \overrightarrow{b_j} \cdot c \quad \text{for all } a, c \in \Sigma_k \]

\[\overrightarrow{b_j} \cdot s_j \cdot \downarrow \rightarrow \overrightarrow{b_j} \cdot \downarrow \]

\[a \cdot \overleftarrow{b_j} \rightarrow \overleftarrow{b_j} \cdot a \quad \text{for all } a \in \Sigma_k \]

\[\downarrow \cdot \overleftarrow{b_j} \rightarrow \downarrow \cdot \overleftarrow{b_j} \]
5. if j is the input instruction (i.e., $j = 1$), then

\[\vdash \cdot b_2 \rightarrow b_1 \]
\[b_1 \cdot a \rightarrow a \cdot b_1 \quad \text{for all } a \in \Sigma_k \]
\[b_1 \cdot \rightarrow \epsilon \]

6. if j is the output instruction (i.e., $j = m$), then

\[S \rightarrow \vdash \cdot b_m \cdot \rightarrow \]
\[b_m \rightarrow b_m \cdot a \quad \text{for all } a \in \Sigma_k \]

The way in which the grammar G generates an output x which P accepts is to first generate by the rules for the output instruction the final contents of P's register when it reached the output instruction during some accepting computation. Then it successively reverses each instruction execution during the computation (guessing appropriate values). When it reaches the input instruction (so the contents of the register should be x) it erases all the special symbols \vdash, b_1, \rightarrow leaving the terminal string x.

Theorem 12.4 A set X is recursively enumerable if and only if $X = L_G$ for some grammar G.

Corollary 12.5 A set X is accepted by some $NRAM$ program if and only if X is accepted by a $DRAM$ program.

Given the equivalences between languages generated by grammars and recursively enumerable sets, because of Rice's Theorem we see that most questions about the properties of languages generated by grammars are algorithmically undecidable.
12.2 Chomsky Classification of Languages

Table 12.1: Chomsky Hierarchy

<table>
<thead>
<tr>
<th>Name</th>
<th>Productions</th>
<th>Acceptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>grammar</td>
<td>arbitrary</td>
<td>(Non-det.) RAM Programs</td>
</tr>
<tr>
<td>context-sensitive</td>
<td>(x \rightarrow y,)</td>
<td>Non-det. Linear Bounded Automata</td>
</tr>
<tr>
<td>(CSG)</td>
<td>with (</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>-or-</td>
<td>(LBA)</td>
</tr>
<tr>
<td></td>
<td>(waZ \rightarrow wyz,)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with (A \in V, y \neq \epsilon)</td>
<td></td>
</tr>
<tr>
<td>context-free</td>
<td>(A \rightarrow y,)</td>
<td>Non-det. Push Down Automata</td>
</tr>
<tr>
<td>(CFG)</td>
<td>with (A \in V, y \neq \epsilon)</td>
<td></td>
</tr>
<tr>
<td>right linear</td>
<td>(A \rightarrow yB) or (A \rightarrow y,)</td>
<td>(Non-det.) Finite State Automaton</td>
</tr>
<tr>
<td>(RLG)</td>
<td>with (A, B \in V, y \in \Sigma^+)</td>
<td></td>
</tr>
</tbody>
</table>

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.
12.3 Context Sensitive Languages

Example 12.2 The grammar

\[
\begin{align*}
S & \rightarrow aBC \\
S & \rightarrow SABC \\
CA & \rightarrow AC \\
BA & \rightarrow AB \\
CB & \rightarrow BC \\
aA & \rightarrow aa \\
aB & \rightarrow ab \\
bB & \rightarrow bb \\
bC & \rightarrow bc \\
cC & \rightarrow cc
\end{align*}
\]

generates the language \(\{a^n b^n c^n : n \geq 1\} \).

For example, we have

\[
S \Rightarrow SABC \Rightarrow aBCABC \Rightarrow aBACBC \Rightarrow aBABCC \Rightarrow aABBCC \\
\Rightarrow aaBBCC \Rightarrow aabBCC \Rightarrow aabbCC \Rightarrow aabbcC \Rightarrow aabbcc
\]
12.3 Context Sensitive Languages

Next: 12.4 Linear Bounded Automata Up: 12. Formal Languages Previous: 12.2 Chomsky

Classification of Languages

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.
12.4 Linear Bounded Automata

Definition 12.4 A linear bounded automaton is an NRAM program \(P \) that operates in linear space, i.e., for some constant \(c \)

\[\forall x \in \text{dom } P \ NRAMspace_p(x) \leq c \cdot |x|. \]

Theorem 12.6 For every context sensitive grammar \(G \), there is a linear bounded automaton \(P \) such that \(L_P = L_G \)

Proof: Given some \(x \in L_G \), the NRAM program \(P \) can "guess" each step of a derivation of \(x \) by starting with \(S \) and at each step guessing the next string in the derivation and verifying that it follows by some rule of \(G \) from the current string. If the input string \(x \) ever appears as the current string in the derivation, then \(P \) halts. Since \(G \) is context sensitive, each string in the derivation must be of length \(\leq |x| \), and since \(P \) needs only a fixed number of strings of this length (\(x \), the current string, and the guessed next string), it operates in linear space.

Theorem 12.7 For every linear bounded automaton \(P \) there is a context sensitive grammar \(G \) such that \(L_G = L_P \)

Proof: Let \(P \) be a one register LBA over \(\sum_k \) such that for some constant \(c \), \(\forall x \in \text{dom } P \)

\[NRAMspace_p(x) \leq c \cdot |x|. \]

We first replace \(P \) be an equivalent LBA \(P_1 \) over \(\sum_{(k+1)^e} \) such that
\[\forall x \in \text{dom } P_1 \quad NRAMspace_{P_1}(x) \leq |x| . \]

\(P_1 \) operates by viewing each symbol of \(\Sigma^{(k+1)} \) as a string of \(\leq c \) symbols over \(\Sigma_k \cup \{ \Box \} \).

Next we replace \(P_1 \) by an equivalent LBA \(P_2 \) over \(\Sigma^{(k+1)} \), where

\[\forall x \in \text{dom } P_2 \quad NRAMspace_{P_2}(x) \leq |x| , \]

and the symbol \(\Box \) is used as a special blank symbol and every successor instruction is immediately preceded by a left shift instruction. \(P_2 \) simulates \(P_1 \) as follows:

1. every time \(P_1 \) executes a left shift instruction, \(P_2 \) executes the same left shift instruction, but also adds a blank symbol to the right end of \(P_1 \)'s register;

2. every time \(P_1 \) executes a successor instruction, \(P_2 \)
 (a) exposes (on the right) the non-blank right end of the register by rotating (leftwards) the register contents;
 (b) removes a blank symbol from the left end;
 (c) executes the same successor instruction;
 (d) and reshifts (leftward) the register contents so that all the blank symbols are on the right end.

Careful examination of \(P_2 \) reveals that it is also the case that every left shift instruction is immediately followed by a successor instruction, so that these instructions always occur in pairs.

We now show how to construct a CSG \(G \) such that \(L_G = L_{P_2} \). For the most part the construction is the same as in Theorem 12.3. Observe first of all that all of the productions are context sensitive except
those given for successor instructions (see 4) and the input instruction (see 5). We deal with these two exceptions separately. The only rule in 4) which is not context sensitive is the rule

\[\overrightarrow{b_j \cdot s_j \cdot 1} \rightarrow \overrightarrow{b_j \cdot 1} \]

We eliminate this kind of rules by using the fact that in \(P_2 \) every successor instruction is immediately preceded by a left shift instruction, and vice versa. Suppose \(j \) is a successor instruction so that \(j - 1 \) is a left shift instruction, then we replace parts 3) and 4) in the construction in Theorem 12.3 by the following rules:

\[
\begin{align*}
\overrightarrow{b_j + 1} & \rightarrow \overrightarrow{b_j} \\
\overrightarrow{b_j \cdot a \cdot c} & \rightarrow \overrightarrow{a \cdot b_j \cdot c} \quad \text{for all} \ a, c \in \Sigma_k \\
\overrightarrow{b_j \cdot s_j \cdot 1} & \rightarrow \overrightarrow{b_j \cdot a \cdot 1} \quad \text{for all} \ a \in \Sigma_k \\
\overrightarrow{c \cdot b_j \cdot a} & \rightarrow \overrightarrow{b_j \cdot a \cdot c} \quad \text{for all} \ a, c \in \Sigma_k \\
\overrightarrow{b_j} & \rightarrow \overrightarrow{b_j - 1}
\end{align*}
\]

The non-context sensitive rules for the input instruction are simply intended to remove the special grammatical markers \(\overrightarrow{1}, b_j, \overrightarrow{1} \) that were introduced by the rules for the output instruction. We can eliminate the necessity of having the special symbols by adding special diacritical marks to all the symbols of \(\Sigma_k \) (thereby increasing the size of our alphabet) which play the same roles as these special symbols. For example, we could replace the first rule of part 6) with the rule
and we could replace the second rules of part 6) with the rules
\[c \vdash b_m \rightarrow a \vdash b_m \cdot c \quad \text{for all } a, c \in \Sigma_k \]

With careful analysis one can eliminate the use of all the special symbols in all the rules, although there are numerous special cases to consider.

Theorem 12.8 Every context sensitive language is a primitive recursive set.

Proof: First of all, a linear bounded automaton can be simulated by a \textit{DRAM} program that recognizes the context sensitive language and that operates in polynomial space, i.e., there is a constant c such that on input x it uses at most $c |x|^2$ space. But, the latter is a primitive recursive function, and \textit{DRAM} programs which operate within primitive recursive time or space bounds compute primitive recursive functions.

Theorem 12.9 The class of context sensitive languages is closed under intersection.

Proof: Let L_1 and L_2 be two CSL's and let P_1 and P_2 be two one register \textit{LBA}'s such that $L_1 = L_{P_1}$ and $L_2 = L_{P_2}$. Then the following two-register \textit{LBA} P accepts $L_1 \cap L_2$.

\begin{verbatim}
inp R_1
 `copy R_1 to R_2`

P_1
 `copy R_2 to R_1`

P_2
 out R_1
\end{verbatim}
Theorem 12.10 The Emptiness Problem for context sensitive languages is undecidable.

Proof: We show that if the question \(\mathcal{L}_P = \emptyset \) for an arbitrary \(LBA \ P \) were algorithmically decidable (i.e., \{ \(P : \mathcal{L}_P = \emptyset \) \} were recursive) then the Halting Problem would be algorithmically decidable. Let \(P \) be an arbitrary \(DRA \) program with one register over \(\Sigma_k \) with \(m \) lines. Let \(x \) be an arbitrary input to \(P \). We represent an accepting computation of \(P \) on input \(x \) in the usual way by strings of the form

\[
y_0 \cdot y_1 \cdot \ldots \cdot y_t
\]

where \(t \) is the number of steps of the computation, \(y_i \) represents the state of \(P \) on input \(x \) at the \(i^{\text{th}} \) step and is of the form

\[
b_j \cdot z
\]

where \(j \) is the line number at step \(i \) and \(z \) represents the register contents at step \(i \). Further, we may assume that by padding with blanks the lengths of all the \(y_i \) are identical.

We construct an \(LBA \ \hat{P}_x \) with two registers, that depends on both \(P \) and \(x \), and that will accept only valid computation strings of the above form. The \(LBA \ \hat{P}_x \) does this by first copying its input from \(R_1 \) to \(R_2 \) and shifting left to remove the first state from the second copy. After that it removes symbols from \(R_1 \) and \(R_2 \) until it reaches the end of \(R_2 \) and verifies that the input string was a valid computation string by checking that

1. \(|y_i| = |y_{i+1}| \) and it must encounter symbols of \(\Gamma \) simultaneously in both \(R_1 \) and \(R_2 \);
2. \(y_0 \) is the initial state;
3. \(y_1 \) is the final state;

4. \(y_{i+1} \) follows from \(y_i \) by a legal instruction execution of \(P \) on input \(x \).

Thus, \(P \) halts on input \(x \) if and only if \(\hat{P}_x \) accepts some input.
12.5 Context Free Languages

Example 12.3 Let the context free grammar G have the following rules:

- $S \rightarrow aAS$
- $S \rightarrow a$
- $A \rightarrow SbA$
- $A \rightarrow ba$

Then the string $aabbaa \in L_G$ via the derivation

$$S \Rightarrow aAS \Rightarrow aA \Rightarrow aSbA \Rightarrow aabAa \Rightarrow aabbaa$$

Observe, that the string $aabbaa$ can also be derived using the leftmost derivation

$$S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabS \Rightarrow aabbaa$$

Theorem 12.11 For each context free grammar G and each $x \in L_G$ there is a leftmost derivation of x in G.

Definition 12.5 A derivation tree for a string w in a context free grammar $G = \langle \Sigma, V, R, S \rangle$ is a tree satisfying:

1.
every vertex has a label, which is a symbol of \(V \cup \Sigma \);

2. the label of the root is \(S \);

3. every interior node has a label from \(V \);

4. if a vertex has a label \(A \) and the \(X_1, \ldots, X_k \) are the labels of the immediate descendants of the vertex in order from left to right, then the rule \(A \rightarrow X_1 \ldots X_k \) must belong to \(R \);

5. \(w \) equals the concatenation of the labels of the leaf vertices from left to right.

Theorem 12.12 Let \(G = \langle \Sigma, V, R, S \rangle \) be a context free grammar. Then \(S \Rightarrow^* x \) if and only if there is a derivation tree in \(G \) for \(x \).

Example 12.4 Let \(G \) be as in Example 12.3 and let \(w = aabbaa \). Then a derivation tree for \(w \) in \(G \) is:

![Derivation tree for aabbaa](image)

In the above example by inspection we see that the following are also derivation trees in \(G \):

![Derivation tree for abaa](image)
Basic Property of Derivation Trees:
Given a derivation tree with repeated non-terminals on some path:

Figure 12.4: Derivation tree for with repeated non-terminal
then the tree can be

- **Pruned**

 to obtain the tree:

 Figure 12.5: Derivation tree after pruning repeated non-terminal

- **Grafted**

 to obtain the tree:

 Figure 12.6: Derivation tree after grafting repeated non-terminal
12.5 Context Free Languages

Next: 12.6 Push Down Automata Up: 12. Formal Languages Previous: 12.4 Linear Bounded Automata

Bob Daley
2001-11-28

©Copyright 1996

Permission is granted for personal (electronic and printed) copies of this document provided that each such copy (or portion thereof) is accompanied by this copyright notice.

Copying for any commercial use including books, journals, course notes, etc., is prohibited.
12.6 Push Down Automata

Definition 12.6 A push down automaton (PDA) M is a system
\[\langle \Sigma, Q, \Gamma, \delta, q_0, \bot, F \rangle, \]
where

1. Σ is a finite set of symbols called the input alphabet;
2. Q is a finite set of states;
3. Γ is a finite set of symbols called the stack alphabet;
4. $q_0 \in Q$ is the initial state;
5. $\bot \in \Gamma$ is the start symbol;
6. $F \subseteq Q$ is the set of final states;
7. δ is a mapping from $Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma$ to finite subsets of $Q \times \Gamma^*$.

Figure 12.7: Schematic for Push Down Automaton
The semantics of the state transition function δ is defined as follows:

For any $q \in Q, a \in \Sigma, A \in \Gamma$

$$\delta(q, a, A) = \{(p_1, \gamma_1), \ldots, (p_m, \gamma_m)\},$$

where for each $1 \leq i \leq m, p_i \in Q$ and $\gamma_i \in \Gamma^*$ means that the PDA M is in state q reading input symbol a with the symbol A on top of its stack, can for any $1 \leq i \leq m$ replace A with γ_i, advance the input head one symbol to the right, and enter state p_i;

For any $q \in Q, A \in \Gamma$

$$\delta(q, \epsilon, A) = \{(p_1, \gamma_1), \ldots, (p_m, \gamma_m)\},$$

where for each $1 \leq i \leq m, p_i \in Q$ and $\gamma_i \in \Gamma^*$ means that the PDA M is in state q, with the symbol A on top of its stack, can for any $1 \leq i \leq m$ replace A with γ_i, and without advancing its input head enter state p_i.

Definition 12.7 An instantaneous description (ID) for a PDA M is a triple (q, w, γ), where $q \in Q$ (the current state), $w \in \Sigma^*$ (the remaining input string), and $\gamma \in \Gamma^*$ (the current stack contents). We define the relation

$$(q, a \cdot w, \alpha \cdot A) \vdash_M (p, w, \alpha \cdot \beta)$$

where $a \in \Sigma \cup \{\epsilon\}, p, q \in Q, A \in \Gamma$, and $\alpha, \beta \in \Gamma^*$, whenever $(p, \beta) \in \delta(q, a, A)$.

Also, if I and J are ID's then $I \vdash^*_M J$ if and only if there exists a sequence of ID's I_0, \ldots, I_n such that

$$I = I_0 \vdash_M I_1 \cdots I_{n-1} \vdash_M I_n = J$$

Definition 12.8 The language accepted by empty stack of a PDA M, denoted by N_M is defined by

$$N_M = \{w : (q_0, w, \perp) \vdash^*_M (p, \epsilon, \epsilon) \text{ for some } p \in Q\}.$$
12.6 Push Down Automata

\[L_M = \{ w : (q_0, w, \bot) \vdash^*_{M} (p, \epsilon, \gamma) \text{ for some } p \in F, \gamma \in \Gamma^* \}. \]

Theorem 12.13
For every PDA \(M_1 \) there is a PDA \(M_2 \) such that \(N_{M_1} = L_{M_2} \).
For every PDA \(M_1 \) there is a PDA \(M_2 \) such that \(L_{M_1} = N_{M_2} \).

Example 12.5 Let \(M = \langle \{0, 1\}, \{q_1, q_2\}, \{R, B, G\}, \delta, q_1, \emptyset \rangle \), where \(\delta \) is defined by:

\[
\begin{align*}
\delta(q_1, 0, R) &= \{(q_1, RB)\} \\
\delta(q_1, 0, G) &= \{(q_1, GB)\} \\
\delta(q_1, 0, B) &= \{(q_1, BB),(q_2, \epsilon)\} \\
\delta(q_1, 1, R) &= \{(q_1, RG)\} \\
\delta(q_1, 1, B) &= \{(q_1, BG)\} \\
\delta(q_1, 1, G) &= \{(q_1, GG),(q_2, \epsilon)\} \\
\delta(q_1, \epsilon, R) &= \{(q_2, \epsilon)\} \\
\delta(q_2, 0, B) &= \{(q_2, \epsilon)\} \\
\delta(q_2, 1, G) &= \{(q_2, \epsilon)\} \\
\delta(q_2, \epsilon, R) &= \{(q_2, \epsilon)\}
\end{align*}
\]

Then, \(N_M = \{ w \cdot \rho(w) : w \in \{0, 1\}^* \} \).

Then on input 0110 the computation proceeds as follows:

<table>
<thead>
<tr>
<th>input</th>
<th>state</th>
<th>stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110</td>
<td>q1</td>
<td>R</td>
</tr>
<tr>
<td>0110</td>
<td>q1</td>
<td>RB</td>
</tr>
<tr>
<td>0110</td>
<td>q2</td>
<td>RBG</td>
</tr>
<tr>
<td>0110</td>
<td>q2</td>
<td>RB</td>
</tr>
<tr>
<td>0110</td>
<td>q2</td>
<td>R</td>
</tr>
</tbody>
</table>
12.6 Push Down Automata

So the PDA stops and accepts.

Theorem 12.14 For every CFG G there is a PDA M such that $L_G = N_M$.

Proof: Let $G = \left(\sum, V, R, S \right)$ be the given CFG. The define the PDA $M = \left(\sum, Q \cup V, \delta, q_0, \bot, \emptyset \right)$ in such a way that for each $w, w \in L_G$ if and only if M accepts w. The PDA M will proceed by reversing the derivation of w in G based on a derivation tree. We first define a *macro* instruction:

$$\Delta(q, \epsilon, \gamma) = \{(p, Z)\},$$

where $q, p \in Q$, $Z \in V$, and $\gamma \in (\sum \cup \Gamma)^*$, such that M in state q replaces $\gamma = \sigma_1 \ldots \sigma_n$ on the stack (where σ_n is on the top of the stack) by Z.

$$\Delta(q, \epsilon, \gamma) = \{(p, Z)\} :$$

$$\delta(q, \epsilon, \sigma_n) = \{(q, \gamma.n - 1, \epsilon)\}$$

$$\delta(q, \gamma.n - 1, \epsilon, \sigma_{n-1}) = \{(q, \gamma.n - 2, \epsilon)\}$$

$$\vdots$$

$$\delta(q, \gamma.1, \epsilon, \sigma_1) = \{(p, Z)\}$$

The PDA M is then defined by:

$$\delta(q_0, a, Z) = \{(q_0, a \cdot Z)\} \quad \text{for } Z \in \Gamma$$

$$\Delta(q_0, \epsilon, x) = \{(q_0, A)\} \quad \text{for } A \rightarrow x \in R$$

$$\delta(q_0, \epsilon, S) = \{(q_1, \epsilon)\}$$

$$\delta(q_1, \epsilon, \bot) = \{(q_1, \epsilon)\}$$

One then easily shows by induction on the length of the derivation/computation that M accepts w if and only if $w \in L_G$.

Example 12.6 Let G be as in Example 12.3 and let $w = aabbaa$.

Figure 12.8: Derivation tree for $aabbaa$
Then, the computation by M on w as defined in Theorem 12.14 is:

<table>
<thead>
<tr>
<th>input</th>
<th>state</th>
<th>stack</th>
<th>rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$aaaabbaa$</td>
<td>q_0</td>
<td>\bot</td>
<td></td>
</tr>
<tr>
<td>$aabbaa$</td>
<td>q_0</td>
<td>\bot, aa</td>
<td>$S \rightarrow a$</td>
</tr>
<tr>
<td>$aabbaa$</td>
<td>q_0</td>
<td>\bot, aS</td>
<td></td>
</tr>
<tr>
<td>$aabba$</td>
<td>q_0</td>
<td>\bot, $aSba$</td>
<td>$A \rightarrow ba$</td>
</tr>
<tr>
<td>$aabba$</td>
<td>q_0</td>
<td>\bot, aSa</td>
<td>$A \rightarrow Sa$</td>
</tr>
<tr>
<td>$aabba$</td>
<td>q_0</td>
<td>\bot, aA</td>
<td></td>
</tr>
<tr>
<td>$aabbaa$</td>
<td>q_0</td>
<td>\bot, $aaAa$</td>
<td>$S \rightarrow a$</td>
</tr>
<tr>
<td>$aabbaa$</td>
<td>q_0</td>
<td>\bot, aAS</td>
<td>$S \rightarrow aAS$</td>
</tr>
<tr>
<td>$aabbaa$</td>
<td>q_0</td>
<td>\bot, S</td>
<td></td>
</tr>
<tr>
<td>$aabbaa$</td>
<td>q_1</td>
<td>\bot</td>
<td></td>
</tr>
<tr>
<td>$aabbaa$</td>
<td>q_1</td>
<td>ϵ</td>
<td></td>
</tr>
</tbody>
</table>

Lemma 12.15 For every CFG $G = \langle \Sigma, V, R, S \rangle$ there exists a CFG $\hat{G} = \langle \Sigma, V, \hat{R}, S \rangle$ such that $L_G = L_{\hat{G}}$ and \hat{R} contains no rules of the form $A \rightarrow B$ where $A, B \in V$.
Proof: If R contains the rule $A \rightarrow B$, then replace it by the set of rules $\{ A \rightarrow x : B \rightarrow x \in R \}$. This replacement occurs one rule at a time, where the rules are ordered according to the left-hand side non-terminal, and rules of the form $A \rightarrow A$ are immediately removed. Clearly, $L_G = L_{\hat{G}}$.

Theorem 12.16 (Pumping Lemma) For every CFG G there exists a positive integer p such that for any $z \in L_G$ such that $|z| \geq p$, z can be written as $z = uvwx$, where $|vwx| \leq p$, $|v| > 0$ or $|x| > 0$, and $uv^iwx^iy \in L_G$ for all $i \geq 0$.

Proof: Let $n = \max \{|x| : A \rightarrow x \in R\}$ and let $k = \#V$. Define $p = n^{k+1}$. Suppose $z \in L_G$ is such that $|z| \geq p$. Let T be a derivation tree for z. Since the maximum length of the righthand side of any rule is $\leq n$, the maximum branching of T is also $\leq n$. Therefore, since $|z| \geq n^{k+1}$, there must be some path in the tree T of length $\geq k + 1$ (having $\geq k + 2$ vertices). Furthermore, since there are at most k non-terminals, there must be some path with some repeated non-terminal A on it. Consider the following schematic for the derivation tree T. We can choose the segment vwx of z in such a way that it is derived from the first occurrence of a repeated non-terminal A from the bottom of the tree. In this way we see that $|vwx| \leq n^{k+1}$. Furthermore, since we can assume that there are no rules of the form $A \rightarrow B$, where $A, B \in V$, we have that either $|v| > 0$ or $|x| > 0$. By the Basic Property of derivation trees repeated grafting (and pruning for the case $i = 0$) yields derivation trees for the strings uv^iwx^iy.

Figure 12.9: Pumping Down

Figure 12.10: Pumping Up
Theorem 12.17 For each CFG G there exist integers p and q such that

1. $L_G \neq \emptyset$ if and only if $\exists z \in L_G \mid |z| < p$

2. L_G is infinite if and only if $\exists z \in L_G \mid p \leq |z| < q$.

Proof: Let $n = \max \{ |x| : A \rightarrow x \in R \}$ and let $k = \#V$. Define $p = nk + 1$ and let $q = 2p$.

1. Clearly, if $\exists z \in L_G$ such that $|z| \leq p$, then $L_G \neq \emptyset$. Suppose $L_G \neq \emptyset$ and let $z \in L_G$. If $|z| \geq p$, then by the Pumping Lemma for CFG's, z can be written as $z = uvwx$ and the string $z_1 = uvwy \in L_G$ and either $|v| > 0$ or $|x| > 0$, so $|z_1| < |z|$. By repeating this pruning process (if $|z_1| \geq p$) we must eventually obtain a string $z_1 \in L_G$ such that $|z_1| < p$.

2. Suppose $\exists z \in L_G$ such that $p \leq |z| \leq q$. By the Pumping Lemma for CFG's we have that z can be written as $z = uvwx$, where $|v| > 0$ or $|x| > 0$, and the string $uv^iwx^iy \in L_G$ for all $i \geq 0$. Clearly, L_G is infinite.

Suppose L_G is infinite. Then there must exist a string $z \in L_G$ such that $|z| \geq q$. Using the Pumping Lemma again we see
that $z = uvwxy$ and the string $z_1 = uwv \in L_G$ is such that $|z_1| \geq |z| - p > p$ (since $|vwx| \leq p$). By repeating this pruning process (if $|z_1| \geq q$) we must eventually obtain a string $z_1 \in L_G$ such that $p \leq |z_1| < q$.

Example 12.7 Let $L = \{a^n b^n c^n : n \geq 1\}$. Then L is a CSL, but L is not a CFL.

Proof: Clearly, L is infinite, so the Pumping Lemma applies to L (assuming that L were a CFL). Let p be the pumping length specified in the Pumping Lemma for L. Let $z = a^p b^p c^p$, so z can be written $z = uvwxy$, where $|v| > 0$ or $|x| > 0$, and $|vwx| \leq p$, and $uv^iwx^iy \in L$ for all $i \geq 0$.

Observe first that v and x can contain at most one letter. For example, if $v = ab$, then $v^2 = abab$ and $uv^2wx^2y \not\in L$.

Next, we then see that the string uv^2wx^2y cannot have equal numbers of a's, b's and c's, since at most two of the letters a, b and c can be pumped up.

Proposition 12.18 The class of context free languages is not closed under intersection.

Proof: Define the languages

$$L_1 = \{a^n b^m c^n : n, m \geq 1\}$$

and

$$L_2 = \{a^m b^n c^m : n, m \geq 1\}$$

The clearly, $L_1 \cap L_2 = \{a^n b^n c^n : n \geq 1\}$, and so by the previous example is not a CFL. However, L_1 and L_2 are easily seen to be CFL's. The PDA M_1 which accepts L_1 operates as follows:

1. M_1 first scans past the a's checking that there is at least one a;
2. M_1 pushes all b's onto its stack, checking that there is at least one b and that there are no a's mixed in with the b's;
3. M_1 matches c's in the input with b's on the stack, reading a c and popping a b, checking that there are no a's or b's mixed in with the c's;
4. M_1 checks that both the input and the stack are empty simultaneously.

Theorem 12.19 For any PDA M the language N_M is context free.
Proof: Let $M = \langle \Sigma, Q, \delta, q_0, \bot, \emptyset \rangle$ be a given PDA. Define $G = \langle \Gamma, V, R, S \rangle$ as follows:

$$V = \{ [q, A, p] : q, p \in Q \text{ and } A \in \Gamma \}$$

and R is the set of rules:

1. $S \rightarrow [q_0, \bot, q]$, for each $q \in Q$;

2. $[q, A, q_{m+1}] \rightarrow a[q_1, B_1, q_2] \cdots [q_m, B_m, q_{m+1}]$, for each $q, q_1, \ldots, q_{m+1} \in Q$, each $a \in \Sigma \cup \{ \epsilon \}$, and each $A, B_1, \ldots, B_m \in \Gamma$, where we have that $\delta(q, a, A)$ contains $(q_1, B_1 \cdots B_m)$. (If $m = 0$, then the rule is $[q, A, q_1] \rightarrow a$).

G is defined in such a way that for any input x, $x \in N_M$ if and only if $x \in L_G$ and a leftmost derivation of x in G corresponds to an accepting computation of x by M. Moreover, $[q, A, p] \Rightarrow^* x$ if and only if x causes M to erase an A from its stack by some sequence of computation steps beginning in state q and ending in state p.

Example 12.8 Let M be the PDA given in Example 12.5 for the language $L = \{ w : \rho(w) : w \in \{0, 1\}^* \}$. The corresponding grammar G is:

\[
\begin{align*}
S & \rightarrow [q_1, R, q] \quad \text{for all } q \in Q \\
[q_1, R, q] & \rightarrow 0[q_1, B, \hat{q}] [\hat{q}, R, q] \quad \text{for all } q, \hat{q} \in Q \\
[q_1, G, q] & \rightarrow 0[q_1, B, \hat{q}] [\hat{q}, G, q] \quad \text{for all } q, \hat{q} \in Q \\
[q_1, B, q] & \rightarrow 0[q_1, B, \hat{q}] [\hat{q}, B, q] \quad \text{for all } q, \hat{q} \in Q \\
[q_1, B, q_2] & \rightarrow 0 \\
[q_1, R, q] & \rightarrow 0[q_1, G, \hat{q}] [\hat{q}, R, q] \quad \text{for all } q, \hat{q} \in Q \\
[q_1, G, q] & \rightarrow 0[q_1, G, \hat{q}] [\hat{q}, G, q] \quad \text{for all } q, \hat{q} \in Q \\
[q_1, B, q] & \rightarrow 0[q_1, G, \hat{q}] [\hat{q}, B, q] \quad \text{for all } q, \hat{q} \in Q \\
[q_1, G, q_2] & \rightarrow 1 \\
[q_1, R, q_2] & \rightarrow \epsilon
\end{align*}
\]
[\[q_2, B, q_2\] \rightarrow 0

[\[q_2, G, q_2\] \rightarrow 1

[\[q_2, R, q_2\] \rightarrow \epsilon

Consider the input 0110 to M:

<table>
<thead>
<tr>
<th>input</th>
<th>state</th>
<th>stack</th>
<th>string / (rule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110</td>
<td>(q_1)</td>
<td>R</td>
<td>([q_1, B, q_2])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>((S \rightarrow [q_1, R, q_2]))</td>
</tr>
<tr>
<td>0110</td>
<td>(q_1)</td>
<td>RB</td>
<td>0[q_1, B, q_2][q_2, R, q_2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(([q_1, B, q_2] \rightarrow 0[q_1, B, q_2][q_2, R, q_2]))</td>
</tr>
<tr>
<td>0110</td>
<td>(q_1)</td>
<td>RBG</td>
<td>01q_1, G, q_2][q_2, B, q_2][q_2, R, q_2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(([q_1, B, q_2] \rightarrow 0[q_1, G, q_2][q_2, B, q_2]))</td>
</tr>
<tr>
<td>0110</td>
<td>(q_2)</td>
<td>RB</td>
<td>011[q_2, B, q_2][q_2, R, q_2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(([q_1, G, q_2] \rightarrow 1))</td>
</tr>
<tr>
<td>0110</td>
<td>(q_2)</td>
<td>R</td>
<td>0110[q_2, R, q_2]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(([q_2, B, q_2] \rightarrow 0))</td>
</tr>
<tr>
<td>0110</td>
<td>(q_2)</td>
<td>(\epsilon)</td>
<td>0110</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(([q_2, R, q_2] \rightarrow \epsilon))</td>
</tr>
</tbody>
</table>
12.7 Regular Languages

Theorem 12.20 Given an NFA $M = \langle \Sigma, Q, \delta, q_0, F \rangle$ there is a regular grammar G such that $L_G = L_M$.

Proof: The grammar $G = \langle \Sigma, Q, R, q_0 \rangle$ has the following rules:

1. $q_1 \rightarrow aq_2$, whenever $q_2 \in \delta(q_1, a)$;
2. $q_1 \rightarrow a$, whenever $q_2 \in \delta(q_1, a)$ and $q_2 \in F$.

It is easy to see that each accepting computation path

![Figure 12.11: Accepting Computation Path](image)

has the corresponding derivation

$$q_0 \Rightarrow a_1q_1 \Rightarrow a_1a_2q_2 \Rightarrow \ldots \Rightarrow a_1 \ldots a_{n-1}q_{n-1} \Rightarrow a_1 \ldots a_n.$$

Theorem 12.21 For each regular grammar $G = \langle \Sigma, V, R, S \rangle$ there is an NFA M such that $L_M = L_G$.
Proof: The NFA $M = \left(\Sigma, V \cup \{q_f\}, \delta, S, \{q_f\} \right)$ has its state transition function δ defined in such a way that

1.

 \[B \in \delta(A, a), \text{ whenever } A \rightarrow aB \in R; \]

2.

 \[q_f \in \delta(A, a), \text{ whenever } A \rightarrow a \in R. \]

Then, for any derivation

\[S \Rightarrow a_1 A_1 \Rightarrow a_1 a_2 A_2 \Rightarrow \ldots \Rightarrow a_1 \cdots a_{n-1} A_n \Rightarrow a_1 \cdots a_n. \]

there is a corresponding computation

Figure 12.12: Accepting Computation Path

![Diagram of accepting computation path](http://www.cs.pitt.edu/~daley/cs2110/notes/cs2110w_node54.html)
accept : cs2110w_.4
acceptable programming system : cs2110w
acceptor : cs2110w_.1

\infty : cs2110w_.1
\forall : cs2110w_.1

alphabet : cs2110w_.2
 input : cs2110w_.4
 output : cs2110w_.4

a^m : cs2110w_.2

\mathbb{B} : cs2110w_.2

\chi_X : cs2110w_.1

Church's Thesis : cs2110w_.2
clause : cs2110w_.1
CNF : cs2110w_.1
computational complexity measure : cs2110w_.1
concatenation : cs2110w_.2
conjunctive normal form : cs2110w_.1
constants
 boolean : cs2110w_.1
DFA : cs2110w_.4
diagonalization : cs2110w_.1 | cs2110w_.1
disjunctive normal form : cs2110w_.1
DNF : cs2110w_.1
dom : cs2110w_.1
domain : cs2110w_.1
 \downarrow : cs2110w_.1
\in : cs2110w_.2
exists : cs2110w_.1
expression
 boolean : cs2110w_.1
 logical : cs2110w_.3
 regular : cs2110w_.5
FIN : cs2110w_.2
function
 boolean : cs2110w_.1
 characteristic : cs2110w_.1
 finite : cs2110w_.1
 number-theoretic : cs2110w_.2
 output : cs2110w_.4
 partial : cs2110w_.1
 partial recursive : cs2110w_.1
 primitive recursive : cs2110w_.1 | cs2110w_.1
 state transition : cs2110w_.4
 uniform projection : cs2110w_.6
Gödel numbering : cs2110w_.2
generator : cs2110w_.1
H : cs2110w_.2
halting problem : cs2110w_.2 | cs2110w_.2
index set : cs2110w_.2
indexing : cs2110w_.2
initial segment : cs2110w_.2
κn : cs2110w_.3
⟨x1,...,xn⟩n : cs2110w_.6
language : cs2110w_.2
 regular : cs2110w_.5
length : cs2110w_.2
::
literal : cs2110w_.1
many-one complete : cs2110w_.1
minimization : cs2110w_.1
 bounded : cs2110w_.3
monomial : cs2110w_.1
Index

\(\mathbb{N} \) : cs2110w_.2

\(noc_k \) : cs2110w_.6

numbers
 natural : cs2110w_.2

\(\nu_n \) : cs2110w_.3

operation
 boolean : cs2110w_.1
 logical : cs2110w_.3

\(\mathcal{P}_C \) : cs2110w_.2

\(\Pi \) : cs2110w_.6

\(\Pi^m_j \) : cs2110w_.6 | cs2110w_.6

predicate
 primitive recursive : cs2110w_.1
 recursive : cs2110w_.

prefix : cs2110w_.2

program
 non-deterministic : cs2110w_.2 | cs2110w_.4
 probabilistic : cs2110w_.2 | cs2110w_.4

program transformation : cs2110w_.

programming system : cs2110w_.

\(\text{prt}_k \) : cs2110w_.6

ran : cs2110w_.1

range : cs2110w_.1

recognizer : cs2110w_.1

recursion
 general : cs2110w_.4
 primitive : cs2110w_.

recursive
 total : cs2110w_.

recursively enumerable : cs2110w_.

reducibility
 many-one : cs2110w_.2

Rice's Theorem : cs2110w_.2

sentence
 propositional : cs2110w_.3

\(\sum \) : cs2110w_.2
\[\Sigma^* : \text{cs2110w}_2 \]
\[\Sigma_n : \text{cs2110w}_2 \]

speed-up: \text{cs2110w}_1

state: \text{cs2110w}_4

 - **final**: \text{cs2110w}_4
 - **initial**: \text{cs2110w}_4

substitution: \text{cs2110w}_

\[\text{\texttt{NOT}} : \text{cs2110w}_2 \]

term: \text{cs2110w}_1

tup: \text{cs2110w}_6

\[\uparrow : \text{cs2110w}_1 \]

variable

 - **boolean**: \text{cs2110w}_1
 - **logical**: \text{cs2110w}_3
 - **propositional**: \text{cs2110w}_3

word: \text{cs2110w}_2

 - **empty**: \text{cs2110w}_2
 - **null**: \text{cs2110w}_2

\[X(n) : \text{cs2110w}_2 \]

\[X^* : \text{cs2110w}_2 \]

\[X^+ : \text{cs2110w}_2 \]

\[X^n : \text{cs2110w}_1 \]